Subscribe to RSS
DOI: 10.1055/s-0029-1217999
Thieme Chemistry Journal Awardees - Where Are They Now? Bridgehead Lithiated 9-Oxabispidines
Publication History
Publication Date:
30 September 2009 (online)
Abstract
Bi- and tricyclic 9-oxabispidines are smoothly deprotonated at -78 ˚C by s-BuLi at one of the bridgehead carbon atoms to give α-lithio ethers, which were trapped with electrophiles in good yields. Rearrangements to ring-contracted N,O-acetals occurred upon warming in the absence of an electrophile. The α-lithio ether intermediates are presumably stabilized by negative hyperconjugation.
Key words
9-oxabispidines - carbanions - rearrangements - lithiation - bicyclic compounds
-
1a
Hoppe D.Hintze F.Tebben P.Paetow M.Ahrens H.Schwerdtfeger J.Sommerfeld P.Haller J.Guarnieri W.Kolczewksi S.Hense T.Hoppe I. Pure Appl. Chem. 1994, 66: 1479 -
1b
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 -
1c
Clayden J. Organolithiums: Selectivity for Synthesis Pergamon; New York: 2002. -
1d
Hodgson DM. Topics in Organometallic Chemistry Vol. 5: Springer; Berlin: 2003. -
1e
Gawley RE.Coldham I. In The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2004. p.997 -
1f
Hoppe D.Christoph G. In The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2004. p.1055 -
1g
Chuzel O.Riant O. In Topics in Organometallic Chemistry Vol. 15:Lemaire M.Mangeney P. Springer; Berlin: 2005. p.592 -
1h
Hoppe D. Synthesis 2009, 43 -
2a
Dixon AJ.McGrath MJ.O’Brien P. Org. Synth. 2006, 83: 141 -
2b
O’Brien P. Chem. Commun. 2008, 655 -
3a
Breuning M.Steiner M. Synthesis 2008, 2841 -
3b
Lesma G.Sacchetti A.Silvani A.Danieli B. In New Methods for the Asymmetric Synthesis of Nitrogen HeterocyclesVicario JL.Badía D.Carrillo L. Research Signpost; Kerala: 2005. p.334 -
4a
Breuning M.Steiner M. Synthesis 2007, 1702 -
4b
Breuning M.Steiner M. Tetrahedron: Asymmetry 2008, 19: 1978 - 5
Breuning M.Steiner M.Mehler C.Paasche A.Hein D. J. Org. Chem. 2009, 74: 1407 - 6
Breuning M.Hein D.Steiner M.Gessner VH.Strohmann C. Chem. Eur. J. 2009, in press - 8
Gilman H.Gaj BJ. J. Org. Chem. 1957, 22: 1165 - 9
Stanetty P.Koller H.Mihovilovic M. J. Org. Chem. 1992, 57: 6833 - 10
Gilman H.Haubein AH.Hartzfeld H. J. Org. Chem. 1954, 19: 1034 -
11a
Tomooka K. In The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley; Chichester: 2004. p.749 -
11b
See ref. 1c, page 12.
- Lithiated THF, for example, fragments by [3+2]-cycloreversion:
-
12a
Jung ME.Blum RB. Tetrahedron Lett. 1972, 18: 3791 -
12b
Bates RB.Kroposki LM.Potter DE. J. Org. Chem. 1972, 37: 560 -
12c
Honeycutt SC. J. Organomet. Chem. 1971, 29: 1 -
13a
Tomooka K.Yamamoto H.Nakai T. Liebigs Ann./Recl. 1997, 1275 -
13b
Marshall JA. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I.Pattenden G. Pergamon; Oxford: 1991. p.975 -
13c
Hoffmann RW. Angew. Chem., Int. Ed. Engl. 1979, 18: 563 -
13d
Schöllkopf U. Angew. Chem., Int. Ed. Engl. 1970, 9: 763 -
14a
Nakai T.Mikami M. Chem. Rev. 1986, 86: 885 -
14b
Nakai T.Mikami M. Org. React. 1994, 46: 105 - 15
Hodgson DM.Buxton TJ.Cameron ID.Gras E.Kirton EHM. Org. Biomol. Chem. 2003, 1: 4293 - For nonstereoselective deprotonation-electrophilic trapping reactions of epoxides, see:
-
16a
Hodgson DM.Norsikian SLM. Org. Lett. 2001, 3: 461 -
16b
Yamauchi Y.Katagiri T.Uneyama K. Org. Lett. 2002, 4: 173 - 17
Bassioni G.Köhler FH. Eur. J. Org. Chem. 2006, 2795 - For the related deprotonation-stannylation of 8-methyl-8-azabicyclo[3.2.1]oct-2-ene, see:
-
18a
Lavoie GG.Bergmann RG. Angew. Chem., Int. Ed. Engl. 1997, 36: 2450 -
18b
Skoog SJ.Mateo C.Lavoie GG.Hollander F.Bergmann RG. Organometallics 2000, 19: 1406 - For the bridgehead lithiation of bridged ketones and other derivatives, see:
-
18c
Hayes CJ.Simpkins NS.Kirk DT.Mitchell L.Baudoux J.Blake AJ.Wilson C. J. Am. Chem. Soc. 2009, 131: 8196 - For high kinetic isotope effects in (-)-sparteine(1)-mediated asymmetric deprotonations, see for example:
-
21a
Hoppe D.Paetow M.Hintze F. Angew. Chem., Int. Ed. Engl. 1993, 32: 394 -
21b
Gallager DJ.Beak P. J. Org. Chem. 1995, 60: 7092 - 24 The proposed β-elimination
of 20A/B to 21A/B is comparable
to the fragmentation of lithiated TMEDA, which provides LiNMe2 and N,N-dimethylaminoethylene
as intermediates, see:
Köhler FH.Hertkorn N.Blümel J. Chem. Ber. 1987, 120: 2081 - 25 The proposed cyclization of 21A/B to 22A/B is
similar to the LiHMDS/TMEDA-catalyzed hydroamination of
electron-rich C-C double bonds, see:
Horillo-Martinez P.Hultsch KC.Gil A.Branchadell V. Eur. J. Org. Chem. 2007, 3311 - According to preliminary quantum chemical calculations, the double chair conformation is highly favored for 2-endo-substituted 9-oxabispidines such as 3 and 4. The same preference was found for the bispidines, see:
-
26a
Galasso V.Goto K.Miyahara Y.Kovač B.Klasinc L. Chem. Phys. 2002, 277: 229 -
26b
Galasso V.Asaro F.Berti F.Kovač B.Habuš I.Sacchetti A. Chem. Phys. 2003, 294: 155 -
27a
Hoffmann R.Radom L.Pople JA.Schleyer P.v.R.Hehre WJ.Salem L. J. Am. Chem. Soc. 1972, 94: 6221 -
27b
Schleyer P.v.R.Kos AJ. Tetrahedron 1983, 39: 1141 -
27c
Petillo PA.Lerner LE. ACS Symp. Ser. 1993, 539: 156 -
27d
Lill SON.Rauhaut G.Anders E. Chem. Eur. J. 2003, 9: 3143 ; and references cited therein -
27e
Karni M.Bernaconi CF.Rappoport Z. J. Org. Chem. 2008, 73: 2980 ; and references cited therein - 28 Compound 24 was
prepared from cycloocta-1,5-diene according to:
Bordwell FG.Douglass ML. J. Am. Chem. Soc. 1966, 88: 993
References and Notes
The term ‘nonactivated ethers’ refers to ethers that do not form benzyl-, allyl-, or vinyl-stabilized α-lithio ethers upon deprotonation.
19All new compounds have been characterized
by ¹H NMR and ¹³C
NMR spectroscopy as well as HRMS spectrometry. Compounds 9b, 9c, and 13A/B could
not be separated from the starting materials.
Spectroscopic Data for Selected Compounds
Compound 9a: mp 70 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 2.21
(s, 6 H, 3-Me, 6-Me), 2.41 (d, J = 11.1
Hz, 2 H, 6-H, 8-H), 2.42 (dd, J = 11.1,
4.4 Hz, 2 H, 4-H, 6-H), 2.89 (d, J = 11.1
Hz, 4 H, 2-H′, 4-H′, 6-H′, 8-H′),
3.85 (t, J = 4.3
Hz, 1 H, 5-H). ¹³C NMR (100 MHz, CDCl3): δ = 47.8
(3-Me, 6-Me), 58.4 (NCH2), 58.5 (NCH2), 68.0
(t, J = 21.8
Hz, C-1), 68.4 (C-5). HRMS (ESI+): m/z calcd
for C8H16DN2O [M + H]+:
158.1398; found: 158.1398.
Compound 10A/B (ratio A/B = 55:45):
mp 35 ˚C. ¹H NMR (400 MHz,
CDCl3): δ = 1.36
(m, 3 H A, 3 H B,
CH2), 1.56 (m, 1 H A, 1 H B, CH2), 1.70-1.87
(m, 3 H A, 3 H B,
CH2, 6-H), 2.19 (s, 3 H A, 3
H B, 11-Me), 2.25 (m, 2 H A,
2 H B, 2-H, 12-H), 2.39 (dd, J = 11.7,
1.3 Hz, 1 H, 10-H A), 2.40 (ddd, J = 11.6,
4.2, 1.6 Hz, 1 H, 10-H B), 2.55 (dd, J = 11.6, 1.5
Hz, 1 H, 8-H A), 2.56 (ddd, J = 11.6,
4.5, 1.7 Hz, 1 H, 8-H B), 2.78-2.95
(m, 4 H A, 4-H B,
6-H′, 8-H′, 10-H′, 12-H′), 3.47
(t, J = 3.5
Hz, 1 H, 1-H A), 3.85 (t, J = 4.1
Hz, 1 H, 9-H B). ¹³C
NMR (100 MHz, CDCl3): δ = 24.6
(CH2 A, B), 25.1
(CH2 A, B),
28.2 (CH2 A, B),
47.4 (11-Me A, B),
54.4 (C-12), 54.5 (C-12), 57.2 (C-6 A, B), 57.8 (C-8), 57.9 (C-8), 58.2 (C-10),
58.3 (C-10), 64.9 (C-2), 65.0 (C-2), 68.3 (t, J = 19.8
Hz, C-9 A), 68.7 (C-9 B),
71.4 (t, J = 21.6
Hz, C-1 B), 71.8 (C-1 A).
IR (ATR): ν = 2929, 2853, 2784, 1458, 1354, 1283,
1199, 1161, 1119, 1069, 973, 815, 722 cm-¹. HRMS
(ESI+): m/z calcd for
C11H19DN2O [M + H]+: 198.1711;
found: 198.1711.
Compound 11: [α]D
²² +14.9
(c 0.22, MeOH). ¹H
NMR (400 MHz, CDCl3): δ = 1.36
(m, 3 H, CH2), 1.56 (m, 1 H, CH2), 1.77 (m,
3 H, CH2, 6-H), 2.19 (s, 3 H, 11-Me), 2.24 (d, J = 11.6 Hz,
1 H, 12-H), 2.26 (m, 1 H, 2-H), 2.39 (dd, J = 11.4,
1.3 Hz, 1 H, 10-H), 2.55 (dd, J = 11.6,
1.4 Hz, 1 H, 8-H), 2.81 (d, J = 11.6
Hz, 1 H, 8-H′), 2.89 (m, 1 H, 6-H′), 2.91 (d, J = 11.7 Hz,
1 H, 10-H′), 2.92 (m, 1 H, 12-H′). ¹³C NMR
(100 MHz, CDCl3): δ = 24.8
(CH2), 25.3 (CH2), 28.3 (CH2),
47.5 (11-Me), 54.5 (C-12), 57.3 (C-6), 57.9 (C-8), 58.4 (C-10),
64.9 (C-2), 68.4 (t, J = 22.1
Hz, C-9), 71.6 (t, J = 22.2
Hz, C-1). IR (ATR): ν = 2931, 2754, 1438, 1352, 1288,
1276, 1176, 1135, 1076, 1056, 1023, 788, 752, 721, 699 cm-¹ HRMS
(ESI+): m/z calcd for
C11H18D2N2O [M + H]+:
199.1774; found: 199.1774.
Compound 12A/B (ratio A/B = 56:44): ¹H
NMR (400 MHz, CDCl3): δ = 1.05
(s, 3 H B, 1-Me), 1.10 (s, 3 H A, 9-Me), 1.27-1.86 (m, 7 H A, 8 H B, CH2,
12-H B), 1.91 (br d, J = 10.5
Hz, 1 H, 2-H B), 2.00 (dd, J = 11.4,
2.4 Hz, 1 H, 10-H A), 2.11-2.18
(m, 3 H, 2-H A, 8-H A,
12-H A), 2.15 (s, 3 H, 11-Me), 2.16 (s,
3 H, 11-Me), 2.29 (ddd, J = 11.5,
4.1, 1.7 Hz, 1 H, 10-H B), 2.55 (ddd, J = 11.5,
4.3, 1.8 Hz, 1 H, 8-H B), 2.80 (m, 2 H,
8-H′ A, 8-H′ B), 2.84-2.93 (m, 3 H A, 3 H B, 6-H′,
10-H′, 12-H′), 3.54 (t, J = 3.7
Hz, 1 H, 1-H A), 3.88 (t, J = 4.3
Hz, 1 H, 9-H B). ¹³C
NMR (100 MHz, CDCl3): δ = 24.8
(CH2), 25.16 (CH2), 25.24 (2 × CH2),
25.7 (1-Me B), 26.2 (1-Me A),
27.2 (CH2), 28.1 (CH2), 47.32 (11-Me), 47.34
(11-Me), 53.8 (C-12 A), 57.3 (C-6 A), 57.58 (C-6 B or
C-10 B), 57.62 (C-6 B or
C-10 B), 58.0 (C-8 B),
60.6 (C-12 B), 63.9 (C-8 A),
64.2 (C-2 A), 64.3 (C-10 A),
69.1 (C-9 B), 70.1 (C-9 A),
70.8 (C-2 B), 72.0 (C-1 B),
73.1 (C-1 A). IR (ATR): ν = 2930,
2854, 2758, 1457, 1357, 1286, 1260, 1102, 1055, 812 cm-¹.
HRMS (ESI+): m/z calcd
for C12H22N2O [M + H]+:
211.1805; found: 211.1805.
Compound 14A/B (ratio A/B = 73:27): ¹H
NMR (400 MHz, CDCl3): δ = 1.10-1.65
(m, 4 H A, 4 H B,
CH2), 1.70-1.95 (m, 3 H A,
3 H B, CH2, 6-H), 2.10-2.45
(m, 5 H, 2-H A, 10-H A,
12-H A, 10-H B,
12-H B,), 2.25 (s, 3 H, 11-Me A), 2.27 (s, 3 H, 11-Me B),
2.56 (dd, J = 11.7,
2.0 Hz, 1 H, 8-H A), 2.59 (br d, J = 10.7 Hz,
1 H, 2-H B), 2.82 (ddd, J = 11.7,
4.3, 1.6 Hz, 1 H, 8-H B), 2.95 (m, 5 H,
6-H′ A, 12-H′ A, 6-H′ B, 8-H′ B, 10-H B), 3.20
(d, J = 11.7
Hz, 1 H, 8-H′ A), 3.30 (d, J = 11.5 Hz,
1 H, 10-H′ A), 3.46 (d, J = 12.2 Hz,
1 H, 12-H′ B), 3.79 (t, J = 4.1 Hz,
1 H, 1-H A), 4.14 (t, J = 4.2
Hz, 1 H, 9-H B), 7.43 (m, 2 H A, 2 H B, PhH),
7.55 (m, 1 H A, 1 H B,
PhH), 8.17 (m, 2 H A, PhH), 8.25 (m, 2
H B, PhH). ¹³C NMR
(100 MHz, CDCl3): δ = 24.67
(CH2 B), 24.70 (CH2 A), 25.1 (CH2 B),
25.2 (CH2 A), 26.5 (CH2 B), 27.8 (CH2 A), 47.2
(11-Me A), 47.3 (11-Me B),
53.6 (C-12 A), 56.6 (C-12 B),
57.1 (C-6 A), 57.4 (C-10 B),
57.7 (C-8 B), 57.9 (C-6 B), 59.6
(C-8 A), 59.8 (C-10 A),
64.0 (C-2 A), 65.5 (C-2 B), 69.3
(C-9 B), 72.9 (C-1 A),
80.5 (C-9 A), 81.9 (C-1 B),
127.9 (PhH A), 128.0 (PhH B),
130.3 (PhH A), 130.6 (PhH B), 132.7
(PhH A), 132.8 (PhH B),
135.2 (PhH A), 135.5 (PhH B),
199.1 (C=O B), 200.7 (C=O A). IR (ATR): ν = 2934, 2852,
2763, 1674, 1446, 1266, 1099, 1054, 708, 689, 665 cm-¹.
HRMS (ESI+): m/z calcd
for C18H25N2O2 [M + H]+: 301.1911;
found: 301.1910.
Compound rac-17: ¹H NMR (400 MHz,
CDCl3): δ = 1.26
(s, 3 H, 5-Me), 2.06 (d, J = 11.1
Hz, 1 H, 4-H), 2.21 (s, 3 H, 3-Me), 2.25 (dd, J = 11.0,
1.8 Hz, 1 H, 2-H), 2.42 (s, 3 H, 6-Me), 2.54 (dd, J = 11.1,
1.8 Hz, 1 H, 2-H′), 2.76 (d, J = 11.1 Hz,
1 H, 4-H′), 3.03 (dd, J = 8.3,
1.7 Hz, 1 H, 7-H), 3.05 (dd, J = 8.3,
5.4 Hz, 1 H, 7-H′), 4.32 (dq, J = 5.4,
1.8 Hz, 1 H, 1-H). ¹³C NMR (100 MHz,
CDCl3): δ = 20.2
(5-Me), 37.1 (6-Me), 45.0 (3-Me), 57.8 (C-7), 58.2 (C-2), 62.3 (C-4),
73.0 (C-1), 92.7 (C-5). IR (ATR): ν = 2925, 2853,
1662, 1456, 1258, 1015, 854, 793 cm-¹.
HRMS (ESI+): m/z calcd
for C8H17N2O [M + H]+:
157.1335; found: 157.1335.
A dilithiation of 10A/B followed by dideuteration, which would also explain the quantitative formation of 11, but without relying on a high kinetic isotope effect, can be excluded since otherwise 11 should also had been formed in the lithiation-deuteration of 4.
22
The Following
Procedure is Representative: Rearrangement of Compound 4
s-BuLi (3.30 mL, 4.59 mmol, 1.39 M in
cyclohexane) was added at -78 ˚C to a
solution of 4 (300 mg, 1.52 mmol) in anhyd
Et2O (10 mL). The reaction mixture was warmed to r.t.
within 16 h, quenched with H2O (30 mL), and extracted with
CH2Cl2 (10 × 30 mL). The combined
organic layers were dried over MgSO4 and evaporated.
Column chroma-tography (basic alumina, activity V, n-pentane-EtOAc = 6:1)
delivered an inseparable 58:42 mixture of 18A and 18B (137 mg, 698 µmol, 46%)
as a colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 1.07
(m, 1 H, 3-H A), 1.18-1.40 (m,
4 H, 3-H′ A, 3-H B,
4-H A, 4-H B),
1.26 (s, 3 H, 1-Me B), 1.29 (s, 3 H, 9-Me A), 1.46-1.60 (m, 4 H, 3-H′ B, 5-H A, 5-H′ A, 5-H B), 1.66
(m, 1 H, 5-H′ B), 1.77 (m, 2 H,
4-H′ A, 4-H′ B), 1.88 (dd, J = 10.9,
2.3 Hz, 1 H, 2-H B), 2.03 (m, 1 H, 6-H A, 6-H B), 2.11
(dt, J = 11.7,
2.0 Hz, 1 H, 2-H A), 2.17 (d, J = 11.2 Hz,
1 H, 8-H A), 2.38 (dd, J = 11.4,
1.8 Hz, 1 H, 8-H B), 2.40 (s, 3 H, 11-Me B), 2.44 (s, 3 H, 10-Me A),
2.53 (dd, J = 11.1,
2.0 Hz, 1 H, 8-H′ B), 2.62 (dd, J = 8.9, 6.5
Hz, 1 H, 10-H B), 2.68 (d, J = 11.2 Hz,
1 H, 8-H′ A), 2.70 (m, 2 H, 6-H′ A, 6-H′ B),
2.91 (dd, J = 8.7,
6.4 Hz, 1 H, 11-H A), 3.15 (d, J = 8.8 Hz,
1 H, 11-H′ A), 3.41 (d, J = 9.0 Hz,
1 H, 10-H′ B), 3.97 (d, J = 6.5 Hz,
1 H, 1-H A), 4.27 (dt, J = 6.5, 2.0
Hz, 1 H, 9-H B). ¹³C
NMR (100 MHz, CDCl3): δ = 18.3 (1-Me B), 19.8 (9-Me A),
24.1 (C-4 A), 24.2 (C-4 B),
24.9 (C-5 B), 25.4 (C-5 A),
26.3 (C-3 B), 26.7 (C-3 A),
37.5 (10-Me A), 40.7 (11-Me B),
54.3 (C-6 A), 55.16 (C-6 B,
C-11 A), 58.8 (C-8 B),
60.1 (C-10 B), 62.3 (C-8 A),
63.3 (C-2 A), 71.4 (C-2 B),
72.2 (C-9 B), 76.9 (C-1 A),
93.5 (C-9 A), 96.0 (C-1 B).
IR (ATR): ν = 2925, 2852, 2793, 1730, 1442, 1377, 1331,
1258, 1181, 1132, 823, 719, 607 cm-¹ HRMS
(ESI+): m/z calcd for
C11H21N2O [M + H]+:
197.1648; found: 197.1648.
¹³C NMR and HRMS also indicate the formation of a small amount of a trideuterated species, the structure of which is unknown.