Synlett 2009(18): 2931-2934  
DOI: 10.1055/s-0029-1218012
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Direct Cobalt-Catalyzed Cross-Coupling Between Aryl and Alkyl Halides

Waldemar Maximilian Czaplik, Matthias Mayer, Axel Jacobi von Wangelin*
Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany
Fax: +49(221)4705057; e-Mail: axel.jacobi@uni-koeln.de;
Further Information

Publication History

Received 17 August 2009
Publication Date:
02 October 2009 (online)

Abstract

An operationally simple cross-coupling reaction between aryl halides and alkyl halides with high selectivity has been developed. The underlying domino process utilizes CoCl2/Me4-DACH as a catalyst system. The methodology exhibits high sustainability as it obviates the need for the pre-formation and handling of stoichiometric amounts of hazardous Grignard compounds.

    References

  • 1a Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 1b Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4442 ; Angew. Chem. 2005, 117, 4516
  • 1c Czaplik WM. Mayer M. Cvengroš J. Jacobi von Wangelin A. ChemSusChem  2009,  2:  396 
  • 2a Beller M. Zapf A. In Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 1:  Negishi E.-i. Wiley; New York: 2002.  p.1209 
  • 2b Zapf A. Beller M. Top. Catal.  2002,  19:  101 
  • 4a Handbook on the Toxicology of Metals   Friberg L. Nordberg GF. Vouk VB. Elsevier; Amsterdam: 1986. 
  • 4b Nickel and the Skin: Absorption, Immunology, Epidemiology, and Metallurgy   Hostynek JJ. Maibach HI. CRC Press; Boca Raton: 2002. 
  • 5 Anastas PT. Warner JC. Green Chemistry: Theory and Practice   Oxford University Press; New York: 1998. 
  • 6a Tsuji T. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed.  2002,  41:  4137 
  • 6b Ohmiya H. Tsuji T. Yorimitsu H. Oshima K. Chem. Eur. J.  2004,  10:  5640 
  • 6c Ohmiya H. Wakabayashi H. Yorimitsu H. Oshima K. Tetrahedron  2006,  62:  2207 
  • 6d Ohmiya H. Yorimitsu H. Oshima K. J. Am. Chem. Soc.  2006,  128:  1886 
  • 6e For a recent review, see: Yorimitsu H. Oshima K. Pure Appl. Chem.  2007,  78:  441 
  • 7a Cahiez G. Avedissian H. Tetrahedron Lett.  1998,  39:  6159 
  • 7b Avedissian H. Bérillon L. Cahiez G. Knochel P. Tetrahedron Lett.  1998,  39:  6163 
  • 7c Cahiez G. Chaboche C. Duplais C. Giulliani A. Moyeux A. Adv. Synth. Catal.  2008,  350:  1484 
  • 7d Cahiez G. Chaboche C. Duplais C. Moyeux A. Org. Lett.  2009,  11:  277 
  • For timely reviews, see:
  • 8a Rudolph A. Lautens M. Angew. Chem. Int. Ed.  2009,  48:  2656 ; Angew. Chem. 2009, 121, 2694
  • 8b Hess W. Treutwein J. Hilt G. Synthesis  2008,  3537 
  • 8c Gosmini C. Bégouin J.-M. Moncomble A. Chem. Commun.  2008,  3221 
  • For selected examples, see:
  • 8d Holzer B. Hoffman R. Chem. Commun.  2003,  732 
  • 8e Korn T. Cahiez G. Knochel P. Synlett  2003,  1892 
  • 8f Korn TJ. Knochel P. Angew. Chem. Int. Ed.  2005,  44:  2947 ; Angew. Chem. 2005, 117, 3007
  • 8g Shirakawa E. Sato T. Imazaki Y. Kimura T. Hayashi T. Chem. Commun.  2007,  4513 
  • For safety aspects of Grignard reagents, see:
  • 9a Rakita PE. In Handbook of Grignard Reagents   Silverman GS. Rakita PE. CRC Press; Boca Raton: 1996.  p.79 
  • 9b Leazer JL. Cvetovich R. Tsay F.-R. Dolling U. Vickery T. Bachert D. J. Org. Chem.  2003,  68:  3695 
  • 9c Reeves JT. Sarvestani M. Song JJ. Tan Z. Nummy LJ. Lee H. Yee NK. Senanayake CH. Org. Proc. Res. Dev.  2006,  10:  1258 
  • For a general explanation of promoting effects of (magnesium) salts, see:
  • 10a Garst JF. Soriaga MP. Coord. Chem. Rev.  2004,  248:  623 
  • 10b For transition-metal catalysis, see for example: Bogdanović B. Schwickardi M. Angew. Chem. Int. Ed.  2000,  39:  4610 ; Angew. Chem. 2000, 112, 4788
  • For related direct cobalt-catalyzed sp²-sp² cross-coupling reactions, see:
  • 11a Gomes P. Gosmini C. Perichon J. Org. Lett.  2003,  5:  1043 
  • 11b Amatore M. Gosmini C. Angew. Chem. Int. Ed.  2008,  47:  2089 ; Angew. Chem. 2008, 120, 2119
  • 12a C(sp3)-Br and C(sp2)-Br bond strengths at 298 K: EtBr (68 kcal mol-1); PhBr (80 kcal mol-1). Taken from: CRC Handbook of Chemistry and Physics   Weast RC. Astle MJ. CRC Press; Boca Raton: 1981. 
  • 12b

    The single electron transfer (SET) into the π* orbital of the ArBr is reversible, and the π*-σ* transition required for dissociation of the C-Br bond is slow.

  • 13 For related iron catalysis, see: Czaplik WM. Mayer M. Jacobi von Wangelin A. Angew. Chem. Int. Ed.  2009,  48:  607 ; Angew. Chem. 2009, 121, 616
  • 14a

    For further details, see Supporting Information.

  • 14b

    General procedure: A 10 mL flask was placed in a water bath (r.t.), charged with Mg turnings (63 mg, 2.6 mmol), fitted with a rubber septum, and purged with argon (1 min). A solution of CoCl2 (13 mg, 0.1 mmol, 5 mol%) and Me4-DACH (35 µL, 0.2 mmol, 10 mol%) in anhydrous THF (4 mL) was added via syringe. The mixture was stirred at r.t. for 15 min, then the reaction was cooled to 0 ˚C and aryl bromide (2.4 mmol) and alkyl bromide (2.0 mmol) were added. After 6 h at 0 ˚C, the reaction was quenched with saturated aqueous NH4Cl (5 mL) and aqueous HCl (10%,
    2 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic phases were dried over Na2SO4, concentrated in vacuo, and subjected to flash chromatography (SiO2; cyclohexane-ethyl acetate).

  • 16a Yoshikai N. Matsuda H. Nakamura E. J. Am. Chem. Soc.  2009,  131:  9590 
  • 16b Yoshikai N. Mashima H. Nakamura E. J. Am. Chem. Soc.  2005,  127:  17978 
  • 17 Lee J.-s. Velarde-Ortiz R. Guijarro A. Wurst JR. Rieke RD. J. Org. Chem.  2000,  65:  5428 
  • 18a We cannot exclude reduction of CoCl2 by the alkyl-MgX, which would result in similar Co(MgX) complexes, see: Jonas K. Koepe G. Krüger C. Angew. Chem. Int. Ed. Engl.  1986,  25:  923 ; Angew. Chem. 1986, 98, 901
  • 18b

    However, reaction of alkyl-MgBr with ArBr under identical conditions gave only minimal amounts of cross-coupling product testifying to a far less active catalyst species being formed. See also Supporting Information.

  • 18c We also observed a beneficial effect on the yield of the cross-coupling product by the employment of an excess of ArBr. The observed formation of 5-7% of biaryl from a 5 mol% catalyst loading mirrors the stoichiometry of the CoCl2 ® I reduction as shown in Scheme 2. A small portion of biaryl might also result from a cobalt-catalyzed oxidative dimerization of ArMgBr in the presence of ArBr, see: Kharasch MS. Fields EK. J. Am. Chem. Soc.  1941,  63:  2316 
  • 19 Racemic 3-bromobutylbenzene was prepared from 3-hydroxybutylbenzene and PBr3 (CH2Cl2, 20 ˚C, 16 h, 80%). See also: Khan AT. Parvin T. Choudhury LH. Ghosh S. Tetrahedron Lett.  2007,  48:  2271 
3

The current world market prices of Pd (370 USD/oz) and Ni (14.4 USD/lb) are expected to increase due to the demand from emerging countries.

15

The rate of Grignard formation is not significantly accelerated by the presence of CoCl2. The presence of amines slows down the Grignard formation from organohalides and Mg, probably by blocking the metal surface.

20

Reactions with (-)-sparteine and quinine as chiral ligands instead of Me4-DACH each afforded 3q in <7% yield (ee was not determined)