Subscribe to RSS
DOI: 10.1055/s-0029-1218278
Synthesis of Benzothiadiazines, Benzothiadiazepines, and Benzothiadiazocines from Intramolecular Azide Reactions and Iodocyclisations
Publication History
Publication Date:
09 October 2009 (online)
Abstract
N-Homoallyl-substituted (2-aminoaryl)sulfonamides undergo intramolecular iodocyclisation to furnish aziridine-fused 1,2,6-benzothiadiazocines. The identical aziridine-fused 1,2,6-benzothiadiazocines were also available from an intramolecular azide to alkene 1,3-diploar cycloaddition involving the corresponding N-homoallylic (2-azidoaryl)sulfonamides in boiling carbon tetrachloride. The use of boiling DMF as solvent for the same reaction gave pyrrolo-fused benzothiadiazines. Intramolecular azide-alkene cycloadditions also allowed access to aziridine-fused pyrrolobenzothiadiazepines and pyrrolobenzodiazepines.
Key words
aziridine - azide - benzodiazocine - benzodiazepine
- 1
Tucker H.LeCount DJ. In Comprehensive Heterocyclic Chemistry II Vol. 9:Rees CW.Katritzky AR.Scriven EFV. Elsevier Science; Oxford: 1996. Chap. 9.06. p.151-182 - 2 For a review, see:
Hemming K.Loukou C. J. Chem. Res. 2005, 1 - 3
Artico M.Silvestri R.Pagnozzi E.Stefancich G.Massa S.Loi AG.Putzolu M.Corrias S.Spiga MG.La Colla P. Bioorg. Med. Chem. 1996, 4: 837 - 4
Costi R.Di Santo R.Artico M.Massa S.Marongiu ME.Loi AG.De Montis A.La Colla P. Antiviral Chem. Chemother. 1998, 9: 127 -
5a
Giannotti D.Viti G.Nannicini R.Pestellini V.Bellarosa D. Bioorg. Med. Chem. Lett. 1995, 5: 1461 -
5b
Costi R.Di Santo R.Artico M.Massa S. J. Heterocycl. Chem. 2002, 39: 81 -
5c
Langlois N.Andriamialisoa RZ. Heterocycles 1989, 29: 1529 - 6
Cherney RJ.Duan JJ.-W.Voss ME.Chen L.Wang L.Meyer DT.Wasserman ZR.Hardman KD.Liu R.-Q.Covington MB.Qian M.Mandlekar S.Christ DD.Trzaskos JM.Magolda RL.Wexler RR.Decicco CP. J. Med. Chem. 2003, 46: 1811 -
7a
Thurston DE.Bose DS. Chem. Rev. 1994, 94: 433 -
7b
Wilkinson GP.Taylor JP.Shnyder S.Cooper P.Howard PW.Thurston DE.Jenkins TC.Loadman PM. Invest. New Drugs 2004, 22: 231 -
8a
Anwar B.Grimsey P.Hemming K.Krajniewski M.Loukou C. Tetrahedron Lett. 2000, 51: 10107 -
8b
Hemming K.Loukou C. Tetrahedron 2004, 60: 3349 -
8c
Loukou C.Patel N.Foucher V.Hemming K. J. Sulfur Chem. 2005, 26: 455 - 9
Hemming K.Patel N. Tetrahedron Lett. 2004, 45: 7553 -
10a
Weinreb SM. Acc. Chem. Res. 1988, 21: 313 -
10b
Bussas R.Kresze G.Münsterer H.Schwöbel A. Sulfur Rep. 1983, 2: 215 -
11a
Jones AD.Hibbs DE.Knight DW. J. Chem. Soc., Perkin Trans. 1 2001, 1182 -
11b
Amjad M.Knight DW. Tetrahedron Lett. 2006, 47: 2825 -
12a
Fagan MA.Knight DW. Tetrahedron Lett. 1999, 6117 -
12b
Barluenga J.Fañanás FJ.Sanz R.Ignacio JM. Eur. J. Org. Chem. 2003, 771 -
13a
Dabbagh HA.Modarresi-Alam AR. J. Chem. Res., Synop. 2000, 190 -
13b
Hodgkinson TJ.Kelland LR.Shipman M.Vile J. Tetrahedron 1998, 54: 6029 -
13c
Coleman RS.Kong J.-S.Richardson TE. J. Am. Chem. Soc. 1999, 121: 9088 - 14
Bräse S.Gil C.Knepper K.Zimmermann V. Angew. Chem. Int. Ed. 2005, 44: 5188 -
15a
Ducray R.Cramer N.Ciufolini MA. Tetrahedron Lett. 2001, 42: 9175 -
15b
Ducray R.Ciufolini MA. Angew. Chem. Int. Ed. 2002, 41: 4688 -
15c
Molander GA.Hiersemann M. Tetrahedron Lett. 1997, 38: 4347 -
15d
Zhou Z.Murphy PV. Org. Lett. 2008, 10: 3777 -
16a
Garanti L.Molteni G.Broggini G. J. Chem. Soc., Perkin Trans. 1 2001, 1816 -
16b
Becalli E.Broggini G.Paladino G.Pilati T.Pontremoli G. Tetrahedron: Asymmetry 2004, 15: 687 -
16c
Broggini G.Molteni G.Terraneo A.Zecchi G. Tetrahedron 1999, 55: 14803 -
16d
Broggini G.Molteni G.Zecchi G. Synthesis 1995, 647 - 19 For full details (including X-ray
crystallographic data), see:
Nilesh Patel . PhD Thesis University of Huddersfield; UK: 2006. -
20a
Corres N.Delgado JJ.García-Valverde Mracaccini S.Rodríguez T.Rojo J.Torroba T. Tetrahedron 2008, 64: 2225 -
20b
Bremner JB.Russell HF.Skelton BW.White AH. Heterocycles 2000, 53: 277 -
20c
Othman M.Pigeon P.Decroix B. J. Heterocycl. Chem. 1999, 735 -
20d
Cliffe IA.Heatherington K.White AC. J. Chem. Soc., Perkin Trans. 1 1991, 1975 - 21
Bremner JB.Sengpracha W. Tetrahedron 2005, 61: 941 - 22
Herold P.Herzig JW.Wenk P.Leutert T.Zbinden P.Fuhrer W.Stutz S.Schenker K.Meier M.Rihs G. J. Med. Chem. 1995, 38: 2946 - 23
Di Santo R.Costi R.Artico M.Massa S. J. Heterocycl. Chem. 1996, 33: 2019 -
24a
Hodgkinson TJ.Shipman M. Tetrahedron 2001, 57: 4467 -
24b
Zang H.Gates KS. Biochemistry 2000, 39: 14968 -
24c
Vedejs E.Naidu BN.Klapars A.Warner DL.Li VS.Na Y.Kohn H. J. Am. Chem. Soc. 2003, 125: 15796 - 25
Zhou YF.Webber SE.Murphy DE.Li LS.Dragovich PS.Tran CV.Sun ZX.Ruebsam F.Shah AM.Tsan M.Showalter RE.Patel R.Li B.Zhoa Q.Han Q.Hermann T.Kissinger CR.LeBrun L.Sergeeva MV.Kirkovsky L. Bioorg. Med. Chem. Lett. 2008, 18: 1413 - 26
Francotte P.de Tullio P.Goffin E.Dintilhac G.Graindorge E.Fraikin P.Lestage P.Danober L.Thomas J.-Y.Ciagnard D.-H.Piroote B. J. Med. Chem. 2007, 50: 3153 - 27
Boverie S.Antoine MH.Somers F.Becker B.Sebille S.Ouedraogo R.Counerotte S.Pirotte B.Lebrun P.de Tullio P. J. Med. Chem. 2005, 48: 3492 -
28a
Broggini G.De Marchi I.Martinelli M.Paladino G.Pilati T.Terraneo A. Synthesis 2005, 2246 -
28b
Broggini G.De Marchi I.Martinelli M.Paladino G.Pennoni A. Lett. Org. Chem. 2004, 1: 221 - 29
Santagada V.Perissutti E.Fiorino F.Vivenzio B.Caliendo G. Tetrahedron Lett. 2001, 42: 2397
References and Notes
Typical Procedure
for the Synthesis of Compounds 8a-c
To a
stirred solution of the homoallylic 2-aminobenzene-sulfonamide 6a-c (0.15-0.30
g, 1.0 equiv) and NaHCO3 (3.0 equiv) i n dry MeCN (10
mL) was added portionwise finely powdered iodine (3.0 equiv). The
reaction mixture was stirred at r.t. until TLC showed no starting
material (ca. 4 h) at which point the reaction mixture was treated
with sat. aq Na2S2O3
until
decolourisation occurred. The resulting solution was extracted with
CH2Cl2 (3 × 20
mL), and the combined organic extracts dried (MgSO4),
filtered, and concentrated by rotary evaporation. The crude product
was purified by gravity column chromatography (SiO2)
using PE-EtOAc (3:2) as the eluent. Compound 8a
was obtained single
spot pure [R
f
= 0.3
(PE-EtOAc, 2:3)] as a yellow oil (0.161 g, 49% yield)
from the N-(butenyl)-2-aminobenzenesulfonamide
(6a, 0.320 g).
Analytical
Data
¹H NMR (400 MHz, CDCl3): δ = 1.35
(3 H, s, Me), 1.51 (1 H, dd, J = 11.2,
8.4 Hz, CMeCH
2CH2NH),
2.02 (1 H, ddd,
J = 8.4,
5.9, 2.5 Hz, CMeCH
2CH2NH),
2.11 (1 H, s, aziridino CH), 2.33 (1 H, s, aziridino CH), 3.36 (1
H, m, CH2CH
2NH), 3.79
(1 H, ddd, J = 15.0, 7.5, 6.1
Hz, CH2CH
2NH),
5.32 (1 H, t, J = 6.1 Hz, SO2NH),
6.85 (1 H, d, J = 7.9 Hz, ArH),
6.98 (1 H, dt, J = 8.4, 0.8
Hz, ArH), 7.35 (1 H, dt, J = 8.4,
1.4 Hz, ArH), 7.83 (1 H, dd, J = 7.9,
1.3 Hz, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 20.2
(CH3), 35.8 (CH2), 39.2 (CH2),
40.2 (CH2), 43.9 (q), 121.7 (CH), 122.0 (CH), 128.6 (CH),
129.6 (q), 133.0 (CH), 147.8 (q). IR: νmax = 3101
(br m), 2953 (m), 2896 (m), 1591 (m), 1472 (s), 1439 (m), 1333 (s),
1216 (s), 1158 (s), 866 (m) cm-¹. HRMS
(ES+): m/z calcd
for C11H14N2O2S: 239.0849;
found: 239.0845 (100%) [M + H]+.
Typical Procedure
for the Synthesis of Compounds 11a-c
A
solution of the N-(butenyl)-2-azidobenzenesulfonamide 9a-c (ca.
100 mg) in DMF (5 mL) was heated at reflux temperature until TLC
showed no starting material (2-3 h). The mixture was cooled,
the solvent removed by reduced pressure rotary evaporation, and
the residue purified by flash silica column chromatography (PE-EtOAc = 3:2).
As an example, pyrrolo-1,2,4-benzothiadiazine 11b (76
mg, 45%) was obtained from azidobenzenesulfonamide 9b (130 mg).
Analytical
Data
¹H NMR (400 MHz, CDCl3): δ = 1.73
(3 H, s, CH3), 1.78 (3 H, d, J = 7.2
Hz, CH3), 1.88 (1 H, dd, J = 13.0,
10.2 Hz, CMeCHHCHMe), 2.21 (1 H, dd, J = 13.0, 7.1 Hz, CMeCHHCHMe), 2.41-2.48 (1 H, m, [(CH2)2CHMe], 3.23 (1 H, dd, J = 10.3, 7.0 Hz, NCHH), 3.58 (1 H, dd, J = 10.0, 7.0
Hz, NCHH), 4.56 (1 H, s, NH), 6.61 (1
H, d, J = 8.4 Hz, ArH), 6.76
(1 H, t, J = 8.0 Hz, ArH), 7.24
(1 H, td, J = 8.4, 1.3 Hz, ArH),
7.68 (1 H, dd, J = 8.0, 1.3
Hz, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 18.6
(CH3), 27.2 (CH3), 28.3 (CH), 51.0 (CH2),
57.9 (CH2), 79.8 (q), 115.3 (CH), 117.5 (CH), 129.3 (CH),
133.2 (CH), 142.3 (q), 145.0 (q). IR (thin film): νmax = 3366
(s), 2965 (s), 2932 (s), 1677 (m), 1605 (s), 1484 (s), 1453 (s),
1322 (s), 1157 (s), 751 (s) cm-¹. HRMS
(ES+): m/z calcd
for C12H16N2O2S + H+:
253.1005; found: 253.1008 [M + H]+.
Analytical Data
for Compound 16 (X = CO, R
¹
= R
²
= H)
¹H
NMR (400 MHz, CDCl3): δ = 2.00 (1 H,
d, J = 3.6 Hz, aziridine CH2),
2.04-2.16 (3H, m, CH2 + CHH), 2.18-2.26 (1 H, m, CHH), 2.53 (1 H, d, J = 4.3
Hz, aziridine CH2), 2.78 (1 H, ddd, J = 9.5,
4.3, 3.6 Hz, aziridine CH), 3.34 (1 H, ddd, J = 9.5,
2.9, 1.6 Hz, pyrrolidine CH), 3.62-3.69 (1 H, m, NCH2),
3.81-3.95 (1 H, m, NCH2), 7.01 (1 H, dt, J = 7.9, 0.7 Hz, ArH), 7.11
(1 H, d, J = 8.1 Hz, ArH), 7.44-7.52
(1 H, m, ArH), 7.74 (1 H, d, J = 7.9
Hz, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 23.1
(CH2), 29.4 (CH2), 32.7 (CH2),
44.8 (CH), 46.1 (CH2), 58.1 (CH), 122.0 (CH), 122.9 (CH),
126.8 (q), 129.7 (CH), 131.2 (CH), 145.6 (q), 150.3 (q). IR (thin
film): νmax = 3063 (m), 2979 (m), 1625
(s), 1456 (s), 1405 (s), 1039 (m), 922 (m), 766 (s), 730 (s), 704
(s) cm-¹. HRMS (ESI+): m/z calcd for C13H14N2O + H+:
215.1179; found: 215.1178 [M + H]+.