Synlett 2009(18): 3043-3047  
DOI: 10.1055/s-0029-1218278
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Benzothiadiazines, Benzothiadiazepines, and Benzothiadiazocines from Intramolecular Azide Reactions and Iodocyclisations

Nilesh Patel, Christopher S. Chambers, Karl Hemming*
Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield, West Yorkshire, HD1 3DH, UK
Fax: +44(1484)472182; e-Mail: k.hemming@hud.ac.uk;
Further Information

Publication History

Received 17 July 2009
Publication Date:
09 October 2009 (online)

Abstract

N-Homoallyl-substituted (2-aminoaryl)sulfonamides undergo intramolecular iodocyclisation to furnish aziridine-fused 1,2,6-benzothiadiazocines. The identical aziridine-fused 1,2,6-benzothiadiazocines were also available from an intramolecular azide to alkene 1,3-diploar cycloaddition involving the corresponding N-homoallylic (2-azidoaryl)sulfonamides in boiling carbon tetrachloride. The use of boiling DMF as solvent for the same reaction gave pyrrolo-fused benzothiadiazines. Intramolecular azide-alkene cycloadditions also allowed access to aziridine-fused pyrrolobenzothiadiazepines and pyrrolobenzodiazepines.

    References and Notes

  • 1 Tucker H. LeCount DJ. In Comprehensive Heterocyclic Chemistry II   Vol. 9:  Rees CW. Katritzky AR. Scriven EFV. Elsevier Science; Oxford: 1996.  Chap. 9.06. p.151-182  
  • 2 For a review, see: Hemming K. Loukou C. J. Chem. Res.  2005,  1 
  • 3 Artico M. Silvestri R. Pagnozzi E. Stefancich G. Massa S. Loi AG. Putzolu M. Corrias S. Spiga MG. La Colla P. Bioorg. Med. Chem.  1996,  4:  837 
  • 4 Costi R. Di Santo R. Artico M. Massa S. Marongiu ME. Loi AG. De Montis A. La Colla P. Antiviral Chem. Chemother.  1998,  9:  127 
  • 5a Giannotti D. Viti G. Nannicini R. Pestellini V. Bellarosa D. Bioorg. Med. Chem. Lett.  1995,  5:  1461 
  • 5b Costi R. Di Santo R. Artico M. Massa S. J. Heterocycl. Chem.  2002,  39:  81 
  • 5c Langlois N. Andriamialisoa RZ. Heterocycles  1989,  29:  1529 
  • 6 Cherney RJ. Duan JJ.-W. Voss ME. Chen L. Wang L. Meyer DT. Wasserman ZR. Hardman KD. Liu R.-Q. Covington MB. Qian M. Mandlekar S. Christ DD. Trzaskos JM. Magolda RL. Wexler RR. Decicco CP. J. Med. Chem.  2003,  46:  1811 
  • 7a Thurston DE. Bose DS. Chem. Rev.  1994,  94:  433 
  • 7b Wilkinson GP. Taylor JP. Shnyder S. Cooper P. Howard PW. Thurston DE. Jenkins TC. Loadman PM. Invest. New Drugs  2004,  22:  231 
  • 8a Anwar B. Grimsey P. Hemming K. Krajniewski M. Loukou C. Tetrahedron Lett.  2000,  51:  10107 
  • 8b Hemming K. Loukou C. Tetrahedron  2004,  60:  3349 
  • 8c Loukou C. Patel N. Foucher V. Hemming K. J. Sulfur Chem.  2005,  26:  455 
  • 9 Hemming K. Patel N. Tetrahedron Lett.  2004,  45:  7553 
  • 10a Weinreb SM. Acc. Chem. Res.  1988,  21:  313 
  • 10b Bussas R. Kresze G. Münsterer H. Schwöbel A. Sulfur Rep.  1983,  2:  215 
  • 11a Jones AD. Hibbs DE. Knight DW. J. Chem. Soc., Perkin Trans. 1  2001,  1182 
  • 11b Amjad M. Knight DW. Tetrahedron Lett.  2006,  47:  2825 
  • 12a Fagan MA. Knight DW. Tetrahedron Lett.  1999,  6117 
  • 12b Barluenga J. Fañanás FJ. Sanz R. Ignacio JM. Eur. J. Org. Chem.  2003,  771 
  • 13a Dabbagh HA. Modarresi-Alam AR. J. Chem. Res., Synop.  2000,  190 
  • 13b Hodgkinson TJ. Kelland LR. Shipman M. Vile J. Tetrahedron  1998,  54:  6029 
  • 13c Coleman RS. Kong J.-S. Richardson TE. J. Am. Chem. Soc.  1999,  121:  9088 
  • 14 Bräse S. Gil C. Knepper K. Zimmermann V. Angew. Chem. Int. Ed.  2005,  44:  5188 
  • 15a Ducray R. Cramer N. Ciufolini MA. Tetrahedron Lett.  2001,  42:  9175 
  • 15b Ducray R. Ciufolini MA. Angew. Chem. Int. Ed.  2002,  41:  4688 
  • 15c Molander GA. Hiersemann M. Tetrahedron Lett.  1997,  38:  4347 
  • 15d Zhou Z. Murphy PV. Org. Lett.  2008,  10:  3777 
  • 16a Garanti L. Molteni G. Broggini G. J. Chem. Soc., Perkin Trans. 1  2001,  1816 
  • 16b Becalli E. Broggini G. Paladino G. Pilati T. Pontremoli G. Tetrahedron: Asymmetry  2004,  15:  687 
  • 16c Broggini G. Molteni G. Terraneo A. Zecchi G. Tetrahedron  1999,  55:  14803 
  • 16d Broggini G. Molteni G. Zecchi G. Synthesis  1995,  647 
  • 19 For full details (including X-ray crystallographic data), see: Nilesh Patel . PhD Thesis   University of Huddersfield; UK: 2006. 
  • 20a Corres N. Delgado JJ. García-Valverde Mracaccini S. Rodríguez T. Rojo J. Torroba T. Tetrahedron  2008,  64:  2225 
  • 20b Bremner JB. Russell HF. Skelton BW. White AH. Heterocycles  2000,  53:  277 
  • 20c Othman M. Pigeon P. Decroix B. J. Heterocycl. Chem.  1999,  735 
  • 20d Cliffe IA. Heatherington K. White AC. J. Chem. Soc., Perkin Trans. 1  1991,  1975 
  • 21 Bremner JB. Sengpracha W. Tetrahedron  2005,  61:  941 
  • 22 Herold P. Herzig JW. Wenk P. Leutert T. Zbinden P. Fuhrer W. Stutz S. Schenker K. Meier M. Rihs G. J. Med. Chem.  1995,  38:  2946 
  • 23 Di Santo R. Costi R. Artico M. Massa S. J. Heterocycl. Chem.  1996,  33:  2019 
  • 24a Hodgkinson TJ. Shipman M. Tetrahedron  2001,  57:  4467 
  • 24b Zang H. Gates KS. Biochemistry  2000,  39:  14968 
  • 24c Vedejs E. Naidu BN. Klapars A. Warner DL. Li VS. Na Y. Kohn H. J. Am. Chem. Soc.  2003,  125:  15796 
  • 25 Zhou YF. Webber SE. Murphy DE. Li LS. Dragovich PS. Tran CV. Sun ZX. Ruebsam F. Shah AM. Tsan M. Showalter RE. Patel R. Li B. Zhoa Q. Han Q. Hermann T. Kissinger CR. LeBrun L. Sergeeva MV. Kirkovsky L. Bioorg. Med. Chem. Lett.  2008,  18:  1413 
  • 26 Francotte P. de Tullio P. Goffin E. Dintilhac G. Graindorge E. Fraikin P. Lestage P. Danober L. Thomas J.-Y. Ciagnard D.-H. Piroote B. J. Med. Chem.  2007,  50:  3153 
  • 27 Boverie S. Antoine MH. Somers F. Becker B. Sebille S. Ouedraogo R. Counerotte S. Pirotte B. Lebrun P. de Tullio P. J. Med. Chem.  2005,  48:  3492 
  • 28a Broggini G. De Marchi I. Martinelli M. Paladino G. Pilati T. Terraneo A. Synthesis  2005,  2246 
  • 28b Broggini G. De Marchi I. Martinelli M. Paladino G. Pennoni A. Lett. Org. Chem.  2004,  1:  221 
  • 29 Santagada V. Perissutti E. Fiorino F. Vivenzio B. Caliendo G. Tetrahedron Lett.  2001,  42:  2397 
17

Typical Procedure for the Synthesis of Compounds 8a-c
To a stirred solution of the homoallylic 2-aminobenzene-sulfonamide 6a-c (0.15-0.30 g, 1.0 equiv) and NaHCO3 (3.0 equiv) i n dry MeCN (10 mL) was added portionwise finely powdered iodine (3.0 equiv). The reaction mixture was stirred at r.t. until TLC showed no starting material (ca. 4 h) at which point the reaction mixture was treated with sat. aq Na2S2O3 until decolourisation occurred. The resulting solution was extracted with CH2Cl2 (3 × 20 mL), and the combined organic extracts dried (MgSO4), filtered, and concentrated by rotary evaporation. The crude product was purified by gravity column chromatography (SiO2) using PE-EtOAc (3:2) as the eluent. Compound 8a was obtained single spot pure [R f  = 0.3 (PE-EtOAc, 2:3)] as a yellow oil (0.161 g, 49% yield) from the N-(butenyl)-2-aminobenzenesulfonamide (6a, 0.320 g).
Analytical Data
¹H NMR (400 MHz, CDCl3): δ = 1.35 (3 H, s, Me), 1.51 (1 H, dd, J = 11.2, 8.4 Hz, CMeCH 2CH2NH), 2.02 (1 H, ddd,
J = 8.4, 5.9, 2.5 Hz, CMeCH 2CH2NH), 2.11 (1 H, s, aziridino CH), 2.33 (1 H, s, aziridino CH), 3.36 (1 H, m, CH2CH 2NH), 3.79 (1 H, ddd, J = 15.0, 7.5, 6.1 Hz, CH2CH 2NH), 5.32 (1 H, t, J = 6.1 Hz, SO2NH), 6.85 (1 H, d, J = 7.9 Hz, ArH), 6.98 (1 H, dt, J = 8.4, 0.8 Hz, ArH), 7.35 (1 H, dt, J = 8.4, 1.4 Hz, ArH), 7.83 (1 H, dd, J = 7.9, 1.3 Hz, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 20.2 (CH3), 35.8 (CH2), 39.2 (CH2), 40.2 (CH2), 43.9 (q), 121.7 (CH), 122.0 (CH), 128.6 (CH), 129.6 (q), 133.0 (CH), 147.8 (q). IR: νmax = 3101 (br m), 2953 (m), 2896 (m), 1591 (m), 1472 (s), 1439 (m), 1333 (s), 1216 (s), 1158 (s), 866 (m) cm. HRMS (ES+): m/z calcd for C11H14N2O2S: 239.0849; found: 239.0845 (100%) [M + H]+.

18

Typical Procedure for the Synthesis of Compounds 11a-c
A solution of the N-(butenyl)-2-azidobenzenesulfonamide 9a-c (ca. 100 mg) in DMF (5 mL) was heated at reflux temperature until TLC showed no starting material (2-3 h). The mixture was cooled, the solvent removed by reduced pressure rotary evaporation, and the residue purified by flash silica column chromatography (PE-EtOAc = 3:2). As an example, pyrrolo-1,2,4-benzothiadiazine 11b (76 mg, 45%) was obtained from azidobenzenesulfonamide 9b (130 mg).
Analytical Data
¹H NMR (400 MHz, CDCl3): δ = 1.73 (3 H, s, CH3), 1.78 (3 H, d, J = 7.2 Hz, CH3), 1.88 (1 H, dd, J = 13.0, 10.2 Hz, CMeCHHCHMe), 2.21 (1 H, dd, J = 13.0, 7.1 Hz, CMeCHHCHMe), 2.41-2.48 (1 H, m, [(CH2)2CHMe], 3.23 (1 H, dd, J = 10.3, 7.0 Hz, NCHH), 3.58 (1 H, dd, J = 10.0, 7.0 Hz, NCHH), 4.56 (1 H, s, NH), 6.61 (1 H, d, J = 8.4 Hz, ArH), 6.76 (1 H, t, J = 8.0 Hz, ArH), 7.24 (1 H, td, J = 8.4, 1.3 Hz, ArH), 7.68 (1 H, dd, J = 8.0, 1.3 Hz, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 18.6 (CH3), 27.2 (CH3), 28.3 (CH), 51.0 (CH2), 57.9 (CH2), 79.8 (q), 115.3 (CH), 117.5 (CH), 129.3 (CH), 133.2 (CH), 142.3 (q), 145.0 (q). IR (thin film): νmax = 3366 (s), 2965 (s), 2932 (s), 1677 (m), 1605 (s), 1484 (s), 1453 (s), 1322 (s), 1157 (s), 751 (s) cm. HRMS (ES+): m/z calcd for C12H16N2O2S + H+: 253.1005; found: 253.1008 [M + H]+.

30

Analytical Data for Compound 16 (X = CO, R ¹  = R ²  = H)
¹H NMR (400 MHz, CDCl3): δ = 2.00 (1 H, d, J = 3.6 Hz, aziridine CH2), 2.04-2.16 (3H, m, CH2 + CHH), 2.18-2.26 (1 H, m, CHH), 2.53 (1 H, d, J = 4.3 Hz, aziridine CH2), 2.78 (1 H, ddd, J = 9.5, 4.3, 3.6 Hz, aziridine CH), 3.34 (1 H, ddd, J = 9.5, 2.9, 1.6 Hz, pyrrolidine CH), 3.62-3.69 (1 H, m, NCH2), 3.81-3.95 (1 H, m, NCH2), 7.01 (1 H, dt, J = 7.9, 0.7 Hz, ArH), 7.11 (1 H, d, J = 8.1 Hz, ArH), 7.44-7.52 (1 H, m, ArH), 7.74 (1 H, d, J = 7.9 Hz, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 23.1 (CH2), 29.4 (CH2), 32.7 (CH2), 44.8 (CH), 46.1 (CH2), 58.1 (CH), 122.0 (CH), 122.9 (CH), 126.8 (q), 129.7 (CH), 131.2 (CH), 145.6 (q), 150.3 (q). IR (thin film): νmax = 3063 (m), 2979 (m), 1625 (s), 1456 (s), 1405 (s), 1039 (m), 922 (m), 766 (s), 730 (s), 704 (s) cm. HRMS (ESI+): m/z calcd for C13H14N2O + H+: 215.1179; found: 215.1178 [M + H]+.