Synlett 2009(18): 2982-2986  
DOI: 10.1055/s-0029-1218279
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of α- and β-C-Glycosides by Addition of Titanium Enolates to Glycals

Erik Gálvez, Igor Larrosa, Pedro Romea*, Fèlix Urpí*
Departament de Química Orgànica, Universitat de Barcelona, Martí i Franqués 1-11, 08028 Barcelona, Catalonia, Spain
Fax: +34(93)3397878; e-Mail: pedro.romea@ub.edu; e-Mail: felix.urpi@ub.edu;
Further Information

Publication History

Received 29 July 2009
Publication Date:
09 October 2009 (online)

Abstract

Both α- and β-C-glycosides can be prepared by SnCl4-mediated addition of titanium enolates from N-acetylthiazolidine­thiones to glycals. Subsequent removal of the chiral auxiliary provides enantiomerically pure fragments that are useful for the synthesis of natural products.

    References and Notes

  • 2a Ravishankar R. Surolia A. Vijayan M. Lim S. Kishi Y. J. Am. Chem. Soc.  1998,  120:  11297 
  • 2b Mikkelsen LM. Hernaiz MJ. Martín-Pastor M. Skrydstrup T. Jiménez-Barbero J. J. Am. Chem. Soc.  2002,  124:  14940 
  • 2c Yang G. Schmieg J. Tsuji M. Franck RW. Angew. Chem. Int. Ed.  2004,  43:  3818 
  • 3a Faul MM. Huff BE. Chem. Rev.  2000,  100:  2407 
  • 3b Yeung K.-S. Paterson I. Chem. Rev.  2005,  105:  4237 
  • 3c Nakata T. Chem. Rev.  2005,  105:  4314 
  • 3d Clarke PA. Santos S. Eur. J. Org. Chem.  2006,  2045 
  • 3e Larrosa I. Romea P. Urpí F. Tetrahedron  2008,  64:  2683 
  • 4a Du Y. Linhardt RJ. Vlahov IR. Tetrahedron  1998,  54:  9913 
  • 4b Ferrier RJ. Zubkov OA. Org. React.  2003,  62:  569 
  • 4c Postema MHD. Piper JL. Komanduri V. Betts RL. ACS Symposium Series  2005,  896:  23 ; and references therein
  • For additions of metal enolates to five-membered oxocarbenium ions, see:
  • 5a Jalce G. Seck M. Franck X. Hocquemiller R. Figadère B. J. Org. Chem.  2004,  69:  3240 
  • 5b Pilli RA. Riatto VB. J. Braz. Chem. Soc.  2008,  19:  583 
  • 5c Jalce G. Franck X. Figadère B. Eur. J. Org. Chem.  2009,  378 
  • 6 As occurs in the greater part of C-glycosidation methodo-logies, those described in reference 5 are unable to provide both stereochemistries from a single glycosyl donor. For an exception, see: Allwein SP. Cox JM. Howard BE. Johnson HWB. Rainier JD. Tetrahedron  2002,  58:  1997 
  • 7a Larrosa I. Romea P. Urpí F. Balsells D. Vilarrasa J. Font-Bardia M. Solans X. Org. Lett.  2002,  4:  4651 
  • 7b Larrosa I. Romea P. Urpí F. Org. Lett.  2006,  8:  527 
  • 8 Unsubstituted enolates usually provide poorer levels of stereocontrol than the related substituted counterparts in carbon-carbon bond forming reactions. See, for instance, the aldol paradigm: Modern Aldol Reactions   Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • For the synthesis of N-acyl-1,3-thiazolidine-2-thiones, see:
  • 9a Baiget J. Cosp A. Gálvez E. Gómez-Pinal L. Romea P. Urpí F. Tetrahedron  2008,  64:  5637 
  • 9b Gálvez E. Romea P. Urpí F. Org. Synth.  2009,  86:  70 
  • 12 Moreira I. Bofill JM. Anglada JM. Solsona JG. Nebot J. Romea P. Urpí F. J. Am. Chem. Soc.  2008,  130:  3242 
  • Configurations of 7a and 7b were secured by comparison with data published in the literature, see:
  • 13a Procopio A. Dalpozzo R. De Nino A. Nardi M. Russo B. Tagarelli A. Synthesis  2006,  332 
  • 13b Wipf P. Uto Y. Yoshimura E. Chem. Eur. J.  2002,  8:  1670 
  • For an insightful analysis into the mechanisms of glycosidation processes on six-membered cyclic systems, see:
  • 15a Ayala L. Lucero CG. Romero JAC. Tabacco SA. Woerpel KA. J. Am. Chem. Soc.  2003,  125:  15521 
  • 15b Shenoy SR. Smith DM. Woerpel KA. J. Am. Chem. Soc.  2006,  128:  8671 
  • 15c Krumper JR. Salamant WA. Woerpel KA. Org. Lett.  2008,  10:  4907 
1

Current address: School of Biological and Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK

10

The α- and β-stereochemistry of C-glycosides was established through NMR studies, involving NOESY experiments that uncovered diagnostic interactions (Figure  [¹] ).

Figure 1

11

Representative procedure: Neat TiCl4 (0.12 mL, 1.1 mmol) was added dropwise to a solution of 2 (203 mg, 1.0 mmol) in CH2Cl2 (8 mL), at 0 ˚C under N2. The yellow suspension was stirred for 5 min at 0 ˚C, cooled to -78 ˚C, and a solution of i-Pr2NEt (0.19 mL, 1.1 mmol) in CH2Cl2 (1.5 mL) was added. The dark-red enolate solution was stirred for 30 min at -78 ˚C and 2 h at -50 ˚C. Then, 1 M SnCl4 in CH2Cl2 (1.1 mL, 1.1 mmol) followed by tri-O-acetylgalactal (a; 136 mg, 0.5 mmol) in CH2Cl2 (1.5 mL) were successively added dropwise at -78 ˚C. The resulting mixture was stirred at -78 ˚C for 30 min and kept at -20 ˚C for 72 h. The reaction was cooled at -78 ˚C and quenched by the addition of saturated NH4Cl (6 mL) with vigorous stirring. The layers were separated, the aqueous layer was re-extracted with CH2Cl2, and the combined organic extracts were dried (Na2SO4), filtered and concentrated. Analysis of the resultant oil by HPLC and ¹H NMR showed the presence of a single diastereomer. The product was then purified by column chromatography on deactivated (2.5% Et3N) silica gel (CH2Cl2-EtOAc, 95:5), to afford β-C-glycoside 6a (159 mg, 0.38 mmol, 76% yield) as a viscous yellow oil. R f = 0.7 (CH2Cl2-EtOAc, 95:5). [α]D -181 (c 0.9, CHCl3). IR (film): 2964, 1738, 1699, 1369, 1235, 1170, 1044 cm. ¹H NMR (400 MHz, CDCl3): δ = 6.08 (dd, J = 10.0, 1.2 Hz, 1H, CH=CHCHOAc), 6.03 (ddd, J = 10.0, 4.9, 2.0 Hz, 1 H, CH=CHCHOAc), 5.16-5.11 (m, 1 H, NCH), 5.10-5.06 (m, 1 H, CHOAc), 4.75-4.68 (m, 1 H, OCHCH=CH), 4.22-4.16 (m, 2 H, CH2OAc), 3.92 (td, J = 6.4, 2.4 Hz, 1 H, OCHCH2OAc), 3.60-3.46 (m, 3 H, SCHxHy and COCH2), 3.04 (dd, J = 11.6, 1.2 Hz, 1 H, SCHxHy), 2.44-2.32 [m, 1 H, CH(CH3)2], 2.08 (s, 3 H, CH3CO), 2.06 (s, 3 H, CH3CO), 1.07 (d, J = 6.8 Hz, 3 H, CH3), 0.99 (d, J = 6.8 Hz, 3 H, CH3). ¹³C NMR (100.6 MHz, CDCl3): δ = 202.9, 170.7, 170.6, 170.4, 135.1, 123.2, 73.8, 71.7, 71.6, 63.8, 62.8, 43.3, 30.8 (×2), 21.0, 20.8, 19.1, 17.8. HRMS (+FAB): m/z [M + H]+ calcd for C18H26NO6S2: 416.1202; found: 416.1200.

14

Adducts 9 and 10 were isolated in low yields because of the sensitivity of the 1,3-thiazolidine-2-thione auxiliary. Yields reported in Table  [²] were not optimized.