Subscribe to RSS
DOI: 10.1055/s-0029-1218280
Temperature-Controlled Selectivity toward [1,3]- or [3,3]-Sigmatropic Rearrangement: Regioselective Synthesis of Substituted 3,4-Dihydrocoumarins
Publication History
Publication Date:
08 October 2009 (online)
Abstract
Either [1,3]- or [3,3]-sigmatropic rearrangements were selectively accessed by controlling the reaction temperature in the gold(III)-catalyzed tandem rearrangement/cyclization of (E)-2-(aryloxymethyl)alk-2-enoates to afford diversely substituted 3,4-dihydrocoumarin derivatives in moderate to good yields and in excellent regioselectivity.
Key words
[1,3]-sigmatropic rearrangement - [3,3]-sigmatropic rearrangement - gold catalyst - tandem reaction - 3,4-dihydrocoumarin
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Hashmi ASK.Hutching GJ. Angew. Chem. Int. Ed. 2006, 45: 7896 -
1b
Hashmi ASK. Chem. Rev. 2007, 107: 3180 -
1c
Jiménez-Núñez E.Echavarren AM. Chem. Commun. 2007, 333 -
1d
Li Z.Brouwer C.He C. Chem. Rev. 2008, 108: 3239 -
1e
Arcadi A. Chem. Rev. 2008, 108: 3266 -
1f
Hashmi ASK.Rodolph M. Chem. Soc. Rev. 2008, 37: 1766 -
1g
Jiménez-Núñez E.Echavarren AM. Chem. Rev. 2008, 108: 3326 -
1h
Skouta R.Li C.-J. Tetrahedron 2008, 64: 4917 -
1i
Muzart J. Tetrahedron 2008, 64: 5815 - For two reviews on gold-catalyzed [3,3]- and [2,3]-sigmatropic rearrangements of propargylic esters, see:
-
2a
Marion N.Nolan SP. Angew. Chem. Int. Ed. 2007, 46: 2750 -
2b
Marco-Contelles J.Soriano E. Chem. Eur. J. 2007, 13: 1350 - For selected examples related to [3,3]-sigmatropic rearrangement catalyzed by gold, see:
-
3a
Peng Y.Cui L.Zhang G.Zhang L. J. Am. Chem. Soc. 2009, 131: 5062 -
3b
Bae HJ.Baskar B.An SE.Cheong JY.Thangadurai DT.Hwang I.-C.Rhee YH. Angew. Chem. Int. Ed. 2008, 47: 2263 -
3c
Yu M.Zhang G.Zhang L. Org. Lett. 2007, 9: 2147 -
3d
Buzas AK.Istrate FM.Gagosz F. Org. Lett. 2007, 9: 985 -
3e
Marion N.Gealageas R.Nolan SP. Org. Lett. 2007, 9: 2653 -
3f
Luo T.Schreiber SL. Angew. Chem. Int. Ed. 2007, 46: 8250 -
3g
Wang S.Zhang L. J. Am. Chem. Soc. 2006, 128: 8414 -
3h
Zhang L.Wang S. J. Am. Chem. Soc. 2006, 128: 1442 -
3i
Wang S.Zhang L. J. Am. Chem. Soc. 2006, 128: 14274 -
3j
Reich NW.Yang C.-G.Shi Z.He C. Synlett 2006, 1278 -
3k
Zhao J.Hughes CO.Toste FD. J. Am. Chem. Soc. 2006, 128: 7436 -
3l
Marion N.Díez-González S.de Frémont P.Noble AR.Nolan SP. Angew. Chem. Int. Ed. 2006, 45: 3647 -
3m
Suhre MH.Reif M.Kirsch SF. Org. Lett. 2005, 7: 3925 - For selected examples of [2,3]-sigmatropic rearrangement catalyzed by gold, see:
-
4a
Uemura M.Watson IDG.Katsukawa M.Toste FD. J. Am. Chem. Soc. 2009, 131: 3464 -
4b
Súarez-Pantiga S.Rubio E.Alvarez-Rúa C.González JM. Org. Lett. 2009, 11: 13 -
4c
Li G.Zhang G.Zhang L. J. Am. Chem. Soc. 2008, 130: 3740 -
4d
Pérez AG.López CS.Marco-Contelles J.Faza ON.Soriano E.de Lera AR. J. Org. Chem. 2009, 74: 2982 -
4e
Moreau X.Goddard J.-P.Bernard M.Lemière G.López-Romero JM.Mainetti E.Marion N.Mouriès V.Thorimbert S.Fensterbank L.Malacria M. Adv. Synth. Catal. 2008, 350: 43 -
4f
Davies PW.Albrecht SJ.-C. Chem. Commun. 2008, 238 -
4g
Gorin DJ.Watson IDG.Toste FD. J. Am. Chem. Soc. 2008, 130: 3736 -
4h
Shapiro ND.Toste FD. J. Am. Chem. Soc. 2008, 130: 9244 -
4i
Witham CA.Mauleón P.Shapiro ND.Sherry BD.Toste FD. J. Am. Chem. Soc. 2007, 129: 5838 -
4j
Amijs CHM.López-Carillo V.Echavarren AM. Org. Lett. 2007, 9: 4021 - For examples of [1,2]-sigmatropic rearrangement catalyzed by gold, see:
-
5a
Peng L.Zhang X.Zhang S.Wang J.
J. Org. Chem. 2007, 72: 1192 -
5b
Sanz R.Miguel D.Rodríguez F. Angew. Chem. Int. Ed. 2008, 47: 7354 -
5c
Mamane V.Hannen P.Fürstner A. Chem. Eur. J. 2004, 10: 4556 - 6
Claisen L. Ber. Dtsch. Chem. Ges. 1912, 45: 3157 -
7a
Rhoads SJ.Raulins NR. Organic Reactions Vol. 22: Wiley; New York: 1974. p.1 -
7b
Wipf P. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon Press; Oxford: 1991. p.827-873 -
7c
Luts RP. Chem. Rev. 1984, 84: 205 -
7d
Ziegler FE. Chem. Rev. 1988, 88: 1423 -
7e
Castro AMM. Chem. Rev. 2004, 104: 2939 -
7f
Ito H.Taguchi T. Chem. Soc. Rev. 1999, 28: 43 -
7g
Hiersemann M.Abraham L. Eur. J. Org. Chem. 2002, 1461 -
7h
Nubbemeyer U. Synthesis 2003, 961 -
8a
Wipf P.Rodríguez S. Adv. Synth. Catal. 2002, 344: 434 -
8b
Hiersemann M.Abraham L. Org. Lett. 2001, 3: 49 -
8c
Saito S.Shimada K.Yamamoto H. Synlett 1996, 720 -
8d
Nonoshita K.Banno H.Maruoka K.Yamamoto H. J. Am. Chem. Soc. 1990, 112: 316 -
8e
Schmid K.Schmid H. Helv. Chim. Acta 1953, 36: 687 -
8f
Fahrni P.Schmid H. Helv. Chim. Acta 1959, 42: 1102 -
8g
Mooney BA.Prager RH.Ward AD. Aust. J. Chem. 1980, 33: 2717 -
9a
Grieco PA.Clark JD.Jagoe CT. J. Am. Chem. Soc. 1991, 113: 5488 -
9b
Grieco PA.Collins JL.Henry KJ. Tetrahedron Lett. 1992, 33: 4735 -
9c
Palani N.Balasubramanian KK. Tetrahedron Lett. 1993, 34: 5001 -
9d
Palani N.Balasubramanian KK. Tetrahedron Lett. 1995, 36: 9527 -
9e
Nakamura S.Ishihara K.Yamamoto H. J. Am. Chem. Soc. 2000, 122: 8131 -
9f
Schobert R.Siegfried S.Gordon G.Mulholland D.Nieuwenhuyzen M. Tetrahedron Lett. 2001, 42: 4561 -
10a
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
10b
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
11a
Liu Y.Li J.Zheng H.Xu D.Xu Z.Zhang Y. Synlett 2005, 2999 -
11b
Liu Y.Xu X.Zheng H.Xu D.Xu Z.Zhang Y. Synlett 2006, 571 -
11c
Liu YK.Zheng H.Xu D.Xu Z.Zhang Y. Synlett 2006, 2492 -
11d
Liu Y.Xu D.Xu Z.Zhang Y. Synlett 2007, 1671 -
11e
Liu Y.Mao D.Qian J.Lou S.Xu Z.Zhang Y. Synthesis 2009, 1170 - 12
Basavaiah D.Bakthadoss M.Pandiaraju S. Chem. Commun. 1998, 1639 - 13 For an excellent review on ligand
effects in homogeneous gold catalysis, see:
Grorin DJ.Sherry BD.Toste FD. Chem. Rev. 2008, 108: 3351 - For silver salt additives in gold catalysis, see, for example:
-
14a
Nieto-Oberhuber C.Muñoz MP.Buñuel E.Nevado C.Cárdenas DJ.Echavarren AM. Angew. Chem. Int. Ed. 2004, 43: 2402 -
14b
Watanabe T.Oishi S.Fujii N.Ohno H. Org. Lett. 2007, 9: 4821 -
14c
Lemière GG.Gandon V.Agenet N.Goddard J.-P.de Kozak A.Aubert C.Fensterbank L.Malacria M. Angew. Chem. Int. Ed. 2006, 45: 7596 -
14d
Shi Z.He C. J. Am. Chem. Soc. 2004, 126: 5964 -
17a
Donnelly DMX.Boland GM. Nat. Prod. Rep. 1995, 12: 321 -
17b
Donnelly DMX.Boland GM. The Flavonoids: Advances in Research since 1986Harborne JB. Chapman and Hall; London: 1993. Chap. 6. -
17c
Posakony J.Hirao M.Steven S.Simon JA.Bedalov A. J. Med. Chem. 2004, 47: 2635 -
18a
Zeitler K.Rose CA. J. Org. Chem. 2009, 74: 1759 -
18b
Häser K.Wenk HH.Schwab W. J. Agric. Food Chem. 2006, 54: 6236 -
19a
Foucaud A.Brine N. Synth. Commun. 1994, 24: 2851 -
19b
Krawczyk H.Albrecht L.Wojciechowski J.Wolf WM. Tetrahedron 2007, 63: 12583 -
19c
Vida JA.Gut M. J. Org. Chem. 1968, 33: 1202 -
19d
Pickett JE.van Dort PC. Tetrahedron Lett. 1992, 33: 1161 -
19e
Murakami M.Tsuruta T.Ito Y. Angew. Chem. Int. Ed. 2000, 39: 2484 -
19f
Henry CE.Kwon O. Org. Lett. 2007, 9: 3069 -
19g
Zhang Z.Ma Y.Zhao Y. Synlett 2008, 1091
References and Notes
Typical Experimental
Procedure for the Synthesis of 2 under Condition A: AuCl3 (9.1
mg, 0.03 mmol), AgOTf (23.1 mg, 0.09 mmol), and DCE (2 mL) were
added to a 10-mL flask. The mixture was stirred at r.t. for 5 min
before a DCE solution of 1a (0.35 g, 1.0
mmol diluted in 1 mL of solvent) was added. Then the reaction mixture
was stirred at 80 ˚C for 4 h. Upon completion of the reaction,
the resulting mixture was diluted with CH2Cl2 (10
mL) and filtered through Celite. After evaporation of the solvent
under vacuum, the residue was purified by column chromatog-raphy
on silica gel (200-300 mesh) using cyclohexane-EtOAc
(12:1) as eluent to give pure 2a.
Typical Experimental Procedure for the Synthesis
of 3 under Condition B: AuCl3 (9.1 mg, 0.03 mmol),
AgOTf (23.1 mg, 0.09 mmol), and DCE or DCB (2 mL) were added to
a 10-mL sealed vessel. The mixture was stirred at r.t. for 5 min
before a DCE or DCB solution of 1a (0.35
g, 1.0 mmol diluted in 1 mL of solvent) was added. Then the reaction mixture
was stirred at 120 ˚C for 2 h. Upon completion of the reaction,
the resulting mixture was diluted with CH2Cl2 (10 mL)
and filtered through Celite. After evaporation of the solvent under
vacuum, the residue was purified by column chromatography on silica
gel (200-300 mesh) using cyclohexane-EtOAc (12:1)
as eluent to give pure 3a.
Representative
Data for Compound 2 and 3:
Compound 2b:
white solid; R
f
0.46
(cyclohexane-EtOAc, 12:1); mp 198.3-201.0 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 4.32 (d,
2 H, J = 2.5 Hz, CH2),
7.25 (d, 1 H, J = 8.5 Hz, ArH), 7.43-7.85
(m, 9 H, ArH), 8.03 (t, 1 H, J = 2.5
Hz, ArCH=). ¹³C NMR (125 MHz,
CDCl3): δ = 26.12, 112.14, 117.50, 122.28,
122.91, 124.27, 125.25, 127.33, 128.87, 129.25, 130.76, 130.91,
131.74, 132.17, 133.55, 142.13, 147.77, 163.60. IR (KBr): 1711 (C=O),
1630 (C=C) cm-¹. GC-MS: m/z = 364 [M+],
366 [M+ + 2]. HRMS
(EI): m/z calcd
for C20H13O2Br: 364.0099; found:
364.0113.
Compound 3c: white solid; R
f
0.56
(cyclohexane-EtOAc, 12:1); mp 114.5-114.6 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 2.28 (s,
3 H, Me), 4.90 (s, 1 H), 5.72 (s, 1 H), 6.44 (s, 1 H), 6.89-7.33
(m, 8 H, ArH). ¹³C NMR (125 MHz, CDCl3): δ = 20.80,
48.26, 117.04, 124.28, 127.52, 127.76, 128.96, 129.08, 129.26, 129.43,
134.53, 136.88, 140.77, 148.59, 163.26. IR (KBr): 1746 (C=O),
1627 (C=C) cm-¹. GC-MS: m/z = 250 [M+].
HRMS (EI): m/z calcd
for C17H14O2: 250.0994; found:
250.1001.