Synlett 2009(18): 3027-3031  
DOI: 10.1055/s-0029-1218281
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Rhenium-Catalyzed Addition of β-Enamino Esters to Allenes

Yoichiro Kuninobu*, Atsuhiro Yamashita, Shun-ichi Yamamoto, Salprima Yudha S., Kazuhiko Takai*
Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
Fax: +81(86)2518094; e-Mail: kuninobu@cc.okayama-u.ac.jp; e-Mail: ktakai@cc.okayama-u.ac.jp;
Further Information

Publication History

Received 7 August 2009
Publication Date:
09 October 2009 (online)

Abstract

Treatment of β-enamino esters with terminal allenes in the presence of a catalytic amount of a rhenium complex, ­[ReBr(CO)3(thf)]2, gave α-alkenylated β-imino or β-enamino esters. In this reaction, a new carbon-carbon bond is formed between the active methylene moiety of the β-enamino esters and the β-carbon of the terminal allenes.

    References and Notes

  • For reviews, see:
  • 1a Houpis IN. Lee J. Tetrahedron  2000,  56:  817 
  • 1b Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed.  2004,  43:  3368 
  • 1c For example, there is a report on gold- and silver-catalyzed addition of active methylene compounds to styrenes, see: Yao X. Li C.-J. J. Am. Chem. Soc.  2004,  126:  6884 
  • 1d For an example of an intramolecular reaction of 7-octene-2,4-dione, see: Qian H. Widenhoefer RA. J. Am. Chem. Soc.  2003,  125:  2056 
  • 2a Kuninobu Y. Kawata A. Takai K. Org. Lett.  2005,  7:  4823 
  • 2b For an indium-catalyzed example, see: Nakamura M. Endo K. Nakamura E. J. Am. Chem. Soc.  2003,  125:  13002 
  • For the nucleophilic addition of β-enamino esters to terminal alkynes, see:
  • 3a Fujimoto T. Endo K. Tsuji H. Nakamura M. Nakamura E. J. Am. Chem. Soc.  2008,  130:  4492 
  • 3b Chun YS. Ko YO. Shin H. Lee S.-g. Org. Lett.  2009,  11:  3414 
  • There have been several reports on the nucleophilic addition of active methylene compounds to activated allenes. See:
  • 4a Paik YH. Dowd P. J. Org. Chem.  1986,  51:  2910 
  • 4b Lu C. Lu X. Org. Lett.  2002,  4:  4677 
  • 4c Patil NT. Pahadi NK. Yamamoto Y. Synthesis  2004,  2186 
  • 4d Huang X. Shen R. Synthesis  2006,  2731 
  • 5 There has been a report on the nucleophilic addition of active methylene compounds to unactivated allenes. See: Yamamoto Y. Al-Masum M. Fujiwara N. Asao N. Tetrahedron Lett.  1995,  36:  2811 
  • There have been several reports on the intramolecular nucleophilic addition of active methylene compounds to allenes. See:
  • 6a Meguro M. Kamijo S. Yamamoto Y. Tetrahedron Lett.  1996,  37:  7453 
  • 6b Trost BM. Michellys P.-Y. Gerusz VJ. Angew. Chem. Int. Ed.  1997,  36:  1750 
  • For reviews on the transformations of allenes, see:
  • 7a Ma S. Chem. Rev.  2005,  105:  2829 
  • 7b Hassan HHAM. Curr. Org. Synth.  2007,  4:  413 
  • 7c Ma S. Aldrichimica Acta  2007,  40:  91 
  • 7d Bai T. Ma S. Jia G. Coord. Chem. Rev.  2009,  253:  423 
  • 11 Yudha SS. Kuninobu Y. Takai K. Angew. Chem. Int. Ed.  2008,  47:  9318 
  • 15 There is a report that a mono-alkylated allene coordinates to a rhenium center at the internal olefinic moiety of the allene. Therefore, we postulated a similar intermediate - an allene coordinated to a rhenium center at the internal olefinic position. See: Casey CP. Brady JT. Organometallics  1998,  17:  4620 
  • We have already reported on the formation of rhenacycle intermediates. See:
  • 16a Kuninobu Y. Kawata A. Takai K. J. Am. Chem. Soc.  2006,  128:  11368 
  • 16b Kuninobu Y. Yu P. Takai K. Chem. Lett.  2007,  36:  1162 
  • 16c Kuninobu Y. Takata H. Kawata A. Takai K. Org. Lett.  2008,  10:  3133 
  • 16d Kuninobu Y. Kawata A. Nishi M. Takata H. Takai K. Chem. Commun.  2008,  6360 ; See also: refs. 2 and 9
8

This reaction did not proceed using Re2(CO)10, ReCl3(PMe2Ph)3, ReCl3(NCMe)(PPh3)2, ReCl3O(PPh3)2, Mn2(CO)10, MnBr(CO)5, PdCl2, PtCl2, AuCl, AuCl3, or GaCl3.

9

α-Alkenylated β-imino ester 4a was obtained selectively as only the E-form. One of the possible reasons for this selectivity is that E-4a is thermodynamically more stable than the Z-form of 4a.

10

Two equivalents of allene 2a are necessary to produce a mixture of α-alkenylated β-imino esters 3a and 4a in high yield because of the polymerization of 2a.

12

The reaction did not proceed when an N-alkyl β-imino ester [ethyl (Z)-2-methyl-3-(propylamino)-2-butenoate] was employed as a substrate.

13

6-Vinylideneundecane (1,1-disubstituted allene), trideca-6,7-diene (internal allene), 1-(propa-1,2-dienyl)benzene (phenyl-substituted allene), and benzyl buta-2,3-dienoate (ester-substituted allene) did not promote the reaction.

14

The reaction did not proceed with reactive alkenes, such as styrene or norbornene, in place of allenes.

17

The products 3 and 4 are quite different from cyclopentenes, which are derived from β-keto esters and terminal allenes (see, ref. 9). The reason is not clear. One possible reason for the difference is that the formation of an allylic intermediate (step 3 or 5) by the flow of electrons from a nitrogen atom is easier than with an oxygen atom. Therefore, in the case of β-enamino esters, α-alkenylated products were formed instead of the formation of cyclopentenes by intramolecular nucleophilic cyclization.

18

Typical Procedure for Rhenium-Catalyzed Addition of β-Enamino Esters to Allenes. A mixture of β-enamino ester (0.250 mmol), allene (0.500 mmol), [ReBr(CO)3(thf)]2 (5.3 mg, 0.0063 mmol), and toluene (0.25 mL) was stirred at 135 ˚C. After stirring for 12 h, [RhCl(cod)]2 (3.1 mg, 0.0063 mmol) was added to the crude mixture. After the mixture was stirred at 135 ˚C for 12 h, the solvent was removed in vacuo. The product was isolated by column chromatography on silica gel, which was pre-treated with Et3N, using
n-hexane-ethyl acetate (30:1) as an eluent.

19

Ethyl 2-methyl-2-(1-phenyliminoethyl)-3-(3-phenyl-propyl)-3-butenoate (3a) and ethyl 2,3-dimethyl-6-phenyl-2-(1-phenyliminoethyl)-3-hexenoate (4a). ¹H NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 3H), 1.56 (s, 3H), 1.66 (s, 3H), 1.67 (s, 3H), 2.42 (q, J = 7.3 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 4.19 (q, J = 7.2 Hz, 2H), 5.08 (s, 1H, 3a), 5.15 (s, 1H, 3a), 5.39 (t, J = 7.3 Hz, 1H, 4a), 6.63 (d, J = 8.7 Hz, 2H), 7.03 (t, J = 7.5 Hz, 1H), 7.17-7.31 (m, 7H); ¹³C NMR (100 MHz, CDCl3): δ (4a) = 14.1, 14.6, 17.5, 20.9, 30.0, 35.4, 60.8, 62.9, 118.7, 123.0, 125.8, 127.1, 128.3, 128.5, 128.9, 135.4, 141.8, 151.4, 171.6, 173.6; IR (nujol): 3061, 2930, 2251, 1731, 1595, 1453, 1365, 1249, 1096, 910, 802, 733, 699, 648 cm; HRMS: m/z [M + Na]+ calcd for C24H29NO2Na: 386.2096; found: 386.2104.