Synlett 2009(19): 3143-3146  
DOI: 10.1055/s-0029-1218347
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Asymmetric Hydrogenation of Heteroaromatic Ketones and Cyclic and Acyclic Enones Mediated by Cu(I)-Chiral Diphosphine Catalysts

Hideo Shimizu*a,b, Takuto Naganob, Noboru Sayoa, Takao Saitoa, Takashi Ohshima*b, Kazushi Mashima*b
a Research & Development Division, Takasago International Corporation, 1-4-11 Nishi-yawata, Hiratsuka, Kanagawa, 254-0073, Japan
e-Mail: hideo_shimizu@takasago.com;
b Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
e-Mail: ohshima@chem.es.osaka-u.ac.jp; e-Mail: mashima@chem.es.osaka-u.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 3 August 2009
Publikationsdatum:
03. November 2009 (online)

Abstract

Copper(I)-catalyzed asymmetric hydrogenation of heteroaromatic ketones, cyclic and acyclic enones is reported. The choice of the chiral diphosphine ligand highly influenced enantioselectivity as well as chemoselectivity. Highly enantioselective hydrogenation of ortho-substituted heteroaromatic ketones was achieved using BDPP as the ligand. In the 1,2-selective hydrogenation of acylic enone, SEGPHOS gave higher enantioselectivity than BDPP. On the other hand, the bulky ligand DTBM-SEGPHOS had a 1,4-selective nature, leading to the first highly 1,4-selective and enantioselective hydrogenation of cyclic enones.

    References and Notes

  • 1 Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; New York: 2000.  p.1-110  
  • 2 Blaser H.-U. Pugin B. Spindler F. Enantioselective Synthesis, In Applied Homogeneous Catalysis with Organometallic Compounds   2nd ed., Vol. 3:  Cornils B. Hermann WA. Wiley-VCH; Weinheim: 2002.  p.1131-1149  
  • For reviews on asymmetric reduction using 3d transition metals. For Fe catalysts, see:
  • 3a Gaillard S. Renaud J.-L. ChemSusChem  2008,  1:  505 
  • 3b Enthaler S. Junge K. Beller M. Angew. Chem. Int. Ed.  2008,  47:  3317 
  • For Cu catalysts, see:
  • 3c Render S. Oestreich M. Angew. Chem. Int. Ed.  2007,  46:  498 
  • 4a Mahoney WS. Stryker JM. J. Am. Chem. Soc.  1989,  111:  8818 
  • 4b Stryker JM. Mahoney WS. Daeuble JF. Brestensky DM. In Catalysis of Organic Reactions   Pascoe WE. Marcel Dekker; New York: 1992.  p.29-44  
  • 4c Daeuble JF. Stryker JM. In Catalysis of Organic Reactions   Sacros MG. Prunier ML. Marcel Dekker; New York: 1995.  p.235-247  
  • 4d Chen J.-X. Daeuble JF. Brestensky DM. Stryker JM. Tetrahedron  2000,  56:  2153 
  • 4e Chen J.-X. Daeuble JF. Stryker JM. Tetrahedron  2000,  56:  2789 
  • 5 Bakos J. Tóth I. Markó L. J. Org. Chem.  1981,  46:  5427 
  • 6 Shimizu H. Igarashi D. Kuriyama W. Yusa Y. Sayo N. Saito T. Org. Lett.  2007,  9:  1655 
  • 7 Shimizu H. Sayo N. Saito T. Synlett  2009,  1295 
  • 9 Saito T. Yokozawa T. Ishizaki T. Moroi T. Sayo N. Miura T. Kumobayashi H. Adv. Synth. Catal.  2001,  343:  264 
  • 10a Ohkuma T. Ikehira H. Ikariya T. Noyori R. Synlett  1997,  467 
  • 10b Ohkuma T. Koizumi M. Doucet H. Pham T. Kozawa M. Murata K. Katayama E. Yokozawa T. Ikariya T. Noyori R. J. Am. Chem. Soc.  1998,  120:  13529 
  • 10c Doucet H. Ohkuma T. Murata K. Yokozawa T. Kozawa M. Kitayama E. England AF. Ikariya T. Noyori R. Angew. Chem. Int. Ed.  1998,  37:  1703 
  • 11a Solodar J. J. Org. Chem.  1978,  43:  1787 
  • 11b Massonneau V. Le Maux P. Simonneaux G. J. Organomet. Chem.  1987,  327:  269 
  • 11c Ohta T. Miyake T. Seido N. Kumobayashi H. Takaya H. J. Org. Chem.  1995,  60:  357 
  • 11d Lu S.-M. Bolm C. Chem. Eur. J.  2008,  14:  7513 
  • 11e Lu S.-M. Bolm C. Angew. Chem. Int. Ed.  2008,  47:  8920 
  • 12a Moritani Y. Appella DH. Jurkauskas V. Buchwald SL. J. Am. Chem. Soc.  2000,  122:  6797 
  • 12b Lipshutz BH. Servesko JM. Angew. Chem. Int. Ed.  2003,  42:  4789 
  • 12c Lipshutz BH. Servesko JM. Petersen TB. Papa PP. Lover AA. Org. Lett.  2004,  6:  1273 
  • 13 Lipshutz BH. Papa P. Angew. Chem. Int. Ed.  2002,  41:  4580 
  • 16 Ohshima T. Tadaoka H. Hori K. Sayo N. Mashima K. Chem. Eur. J.  2008,  14:  2060 
8

The reaction with additional 3 equiv of P(3,5-xylyl)3 gave an almost identical result.

14

The reaction using BDPP and SEGPHOS instead of DTBM-SEGPHOS under the reaction conditions of entry 2 resulted in low conversion and low chemoselectivity. (S,S)-BDPP: conv. 25%, 8/9/10 = 53:11:36. R-SEGPHOS: conv. 17%,
8/9/10 = 11:18:70.

15

Asymmetric hydrogenation of 3-methylcyclohex-2-enone under the reaction conditions described in Table  [³] , entry 4 resulted in 51% conversion, allylic alcohol/sat. ketone/sat. alcohol = 2:61:37, 30% yield of sat. ketone, 92% ee (R) of sat. ketone (not optimized).

17

Formation of the fully sat. ketone, menthone, was <1% based on GC analysis.