RSS-Feed abonnieren
DOI: 10.1055/s-0029-1218356
Gold Catalysis in Glycosylation Reactions
Publikationsverlauf
Publikationsdatum:
11. November 2009 (online)
Abstract
Glycosylation of alcohols containing acid-sensitive groups, as for example 1,2-5,6-di-O-isopropylidene-glucofuranose, Fmoc-threonine tert-butyl ester or farnesol, is achieved using glycosyl trichloroacetimidates activated by gold(I) chloride (5-10 mol%). While glycosylation with 2-O-acyl protected glycosyl donors proceeds with 1,2-trans-selectivity, non-neighboring group active glycosyldonors give mixtures of anomeric glycosides or α-glycosides depending upon their structure and the reactivity of the glycosyl acceptor.
Key words
gold catalysis - glycosylation - glycosyl halide
- 1
Spiro RG. Glycobiology 2002, 12: 43 -
2a
Dekker J.Rosen JWA.Büller HA.Einerhand AWC. Trends Biochem. Sci. 2002, 27: 126 -
2b
Dwek RA. Chem. Rev. 1996, 96: 683 - 3
Dziadek S.Hobel A.Schmitt E.Kunz H. Angew. Chem. Int. Ed. 2005, 44: 7630 - 4
Kuhn A.Kunz H. Angew. Chem. Int. Ed. 2007, 46: 454 ; and literature cited therein - For reviews, see:
-
5a
Zhu X.Schmidt RR. Angew. Chem. Int. Ed. 2009, 48: 1900 -
5b
Codeé DCJ.Litjens REJN.van den Bos LJ.Overkleft HS.van der Marel GA. Chem. Soc. Rev. 2005, 34: 769 -
5c
Manabe S.Ito Y. Curr. Bioact. Compd. 2008, 4: 258 - 6
Morales-Serna A.Diaz J.Matheu MI.Castillon S. Eur. J. Org. Chem. 2009, 23: 3849 - 7
Caputo R.Kunz H.Mastroianni D.Palumbo G.Petadella S.Solla F. Eur. J. Org. Chem. 1999, 3147 - 8
Mensah EA.Nguyen HM. J. Am. Chem. Soc. 2009, 131: 8778 -
9a
Schmidt RR.Michel J. Angew. Chem., Int. Ed. Engl. 1980, 19: 731 -
9b
Kinzy W.Schmidt RR. Adv. Carbohydr. Chem. Biochem. 1994, 50: 21 - 10
Vidadala SR.Hotha S. Chem. Commun. 2009, 2505 - 11
Mensah EA.Azarelli JM.Nguyen HM. J. Org. Chem. 2009, 74: 1650 - 12
Zhang G.Liu Q.Shi L.Wang J. Tetrahedron 2008, 64: 339 - 13
Li Y.Tang P.Chen Y.Yu B. J. Org. Chem. 2008, 73: 4323 - 14
Liebe B.Kunz H. Helv. Chim. Acta 1997, 80: 1473 - 15
Schmidt RR. Angew. Chem., Int. Ed. Engl. 1986, 25: 212 - 17
Eichler E.Jennings HJ.Gilbert M.Whitfield DM. Carbohydr. Res. 1999, 319: 1 - 18
Fischer E.Helferich B. Liebigs Ann. Chem. 1911, 383: 68 -
19a
Iga DP.Iga S.Schmidt RR.Buzas M.-C. Carbohydr. Res. 2005, 340: 2052 -
19b
Kulkarni SS.Gervay-Hague J. Org. Lett. 2008, 10: 4739 - 20
Pleuss N.Kunz H. Synthesis 2005, 122
References and Notes
Analytical Data
for Compounds 6, 8, and 10
Compound 6a: [α]D
²5 -38.2
(c 1, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 4.52 (H-1, J
1,2 = 7.7
Hz).
[¹8]
Compound 6b: [α]D
²5 28.1. ¹H
NMR (300 MHz, CDCl3): δ = 4.51 (H-1, J
1,2 = 8.1
Hz).
Compound 8a: [α]D
²5 -5.1. ¹H
NMR (300 MHz, CDCl3): δ = 4.51 (H-1, J
1,2 = 8.1
Hz).
[¹9]
Compound 8b: [α]D
²5 -28.0. ¹H
NMR (300 MHz, CDCl3):
δ = 4.48
(H-1, J
1,2 = 8.1
Hz).
Compound 8c: [α]D
²5 4.4. ¹H
NMR (300 MHz, CDCl3): δ = 4.46 (H-1, J
1,2 = 7.7
Hz).
Compound 8d: [α]D
²5 -6.8. ¹H
NMR (300 MHz, CDCl3): δ = 4.47 (H-1, J
1,2 = 8.1
Hz).
[²0]
Compound 8e, β-anomer: [α]D
²5 11.3. ¹H
NMR (300 MHz, CDCl3): δ = 4.97 (H-1, J
1,2 = 8.1
Hz).
Compound 8e, α-anomer: [α]D
²5 73.5. ¹H
NMR (300 MHz, CDCl3): δ = 5.56-5.49
(m, 2 H, H-1, H-2). ¹³C NMR (75.5 MHz,
CDCl3): δ = 95.1 (C-1).
Compound 10a: [α]D
²5 25.6
(c 1, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 5.32 (H-1, J
1,2 = 3.7
Hz).
Compound 10b: [α]D
²5 121.5
(c 1, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 4.93 (H-1, J
1,2 = 3.7
Hz).