Synlett 2009(20): 3315-3319  
DOI: 10.1055/s-0029-1218363
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Acyl-Claisen Approach to Tetrasubstituted Tetrahydrofuran Lignans: Synthesis of Fragransin A2, Talaumidin, and Lignan Analogues

Claire E. Rye, David Barker*
Department of Chemistry, The University of Auckland, 23 Symonds St, Auckland 1142, New Zealand
Fax: +64(9)3737422; e-Mail: d.barker@auckland.ac.nz;
Weitere Informationen

Publikationsverlauf

Received 14 August 2009
Publikationsdatum:
11. November 2009 (online)

Abstract

A simple and stereocontrolled synthesis of racemic 2,3,4,5-tetrasubstituted tetrahydrofurans was achieved from acyl-Claisen derived syn-disubstituted amides.

    References and Notes

  • 1a Saleem M. Kim HJ. Ali MS. Lee YS. Nat. Prod. Rep.  2005,  22:  696 
  • 1b Ward RS. Nat. Prod. Rep.  1999,  16:  75 
  • 1c da Silva Filho AA. Albuquerque S. e Silva MLA. Eberlin MN. Tomazela DM. Bastos JK. J. Nat. Prod.  2004,  67:  42 
  • 1d Zhai H. Inoue T. Moriyama M. Esumi T. Mitsumoto Y. Fukuyama Y. Biol. Pharm. Bull.  2005,  28:  289 
  • 1e Kraft C. Jenett-Siems K. Kohler I. Tofern-Reblin B. Siems K. Bienzle U. Eich E. Phytochemistry  2002,  60:  167 
  • 1f Abe F. Nagafuji S. Yamauchi T. Okabe H. Maki J. Higo H. Akahane H. Aguilar A. Jimenez-Estrada M. Reyes-Chilpa R. Biol. Pharm. Bull.  2002,  25:  1188 
  • 1g Zhang HJ. Tamez PA. Hoang VD. Tan GT. Hung NV. Xuan LT. Huong LM. Guong NM. Thao DT. Soejarto DD. Fong HHS. Pezzuto JM. J. Nat. Prod.  2001,  64:  772 
  • 1h Fernandes AMAP. Barata LES. Ferri PH. Phytochemistry  1993,  32:  1567 
  • 2a Hattori M. Hada S. Kawata Y. Tezuka Y. Kikuchi T. Namba T. Chem. Pharm. Bull.  1987,  35:  3315 
  • 2b Hanessian S. Reddy GJ. Synlett  2007,  475 
  • 3a Zhai H. Nakatsukasa M. Mitsumoto Y. Fukuyama Y. Planta Med.  2004,  70:  598 
  • 3b Esumi T. Hojyo D. Zhai H. Fukuyama Y. Tetrahedron Lett.  2006,  47:  3979 
  • 4a Rao KV. Alvarez FM. Tetrahedron Lett.  1983,  24:  4947 
  • 4b Hanessian S. Reddy GJ. Chahal N. Org. Lett.  2006,  8:  5477 
  • 4c Kasper AC. Moon EJ. Hu X. Park Y. Wooten CM. Kim H. Yang W. Dewhirst MW. Hong J. Bioorg. Med. Chem. Lett.  2009,  19:  3783 
  • 5a Moinuddin SGA. Hishiyama S. Cho M.-H. Davin LB. Lewis NG. Org. Biomol. Chem.  2003,  1:  2307 
  • 5b Yu B.-B. Han X.-Z. Lou H.-X. J. Agric. Food Chem.  2007,  55:  7753 
  • 5c Panzella L. De Lucia M. Amalfitano C. Pezzella A. Evidente A. Napolitano A. D’Ischia M. J. Org. Chem.  2006,  71:  4246 
  • 6 Biftu T. Gamble NF. Doebber T. Hwang S.-B. Shen T.-Y. Snyder J. Springer JP. Stevenson R. J. Med. Chem.  1986,  29:  1917 
  • 7 Jahn U. Rudakov D. Org. Lett.  2006,  8:  4481 
  • 8a Yu C.-M. Choi H.-S. Lee J. Jung W.-H. Kim H.-J. J. Chem. Soc., Perkin Trans. 1  1996,  115 
  • 8b Yoon TP. Dong VM. MacMillan DWC. J. Am. Chem. Soc.  1999,  121:  9726 
  • 8c Diederich M. Nubbemeyer U. Angew. Chem., Int. Ed. Engl.  1995,  34:  1026 
  • 8d Deur CJ. Miller MW. Hegedus LS. J. Org. Chem.  1996,  61:  2871 
  • 8e For complete information, see: Nubbermeyer U. In
    The Claisen Rearrangement: Methods and Applications   Hiersemann M. Nubbemeyer U. Wiley-VCH; Weinheim: 2007.  p.461 ; and references cited therein
  • 9a Reyes E. Vicario JL. Carrillo L. Badía D. Uria U. Iza A. J. Org. Chem.  2006,  71:  7763 ; and references cited therein
  • 9b Myers AG. Yang BH. Chen H. McKinstry L. Kopecky DJ. Gleason JL. J. Am. Chem. Soc.  1997,  119:  6496 
  • 9c Reyes E. Vicario JL. Badía D. Carrillo L. Iza A. Uria U. Org. Lett.  2006,  8:  2535 
  • 10a Raubo P. Giuliano C. Hill AW. Huscroft IT. London C. Reeve A. Seward EM. Swain CG. Kulagowski JJ. Synlett  2006,  600 
  • 10b Xu Q. Rozners E. Org. Lett.  2005,  7:  2821 
  • 10c Laabs S. Munch W. Bats JW. Nubbemeyer U. Tetrahedron  2002,  58:  1317 
  • 12a Concellon JM. Rodriguez-Solla H. Mejica C. Blanco EG. Garcia-Granda S. Diaz MR. J. Org. Chem.  2008,  73:  3828 
  • 12b Olivella A. Rodriguez-Escrich C. Urpi F. Vilarrasa J. J. Org. Chem.  2008,  73:  1578 
  • 12c Concellon JM. Rodriguez-Solla H. Diaz P. J. Org. Chem.  2007,  72:  7974 
  • 14 Konno C. Lu ZZ. Xue HZ.-g. Erdelmeier CAJ. Meksuriyen D. Che CT. Cordell GA. Soejarto DD. Waller DP. Fong HHS. J. Nat. Prod.  1990,  53:  396 
11

(E)-Crotylamines were prepared from (E)-crotonaldehyde, by LAH reduction and PBr3 bromination to give (E)-crotyl bromide. Amine 5a was prepared by amination with morpholine at 0 ˚C in CH2Cl2, whilst amine 5b was prepared using the sodium hydride derived sodium salt of pyrrolidine and TBAI in THF.

13

We found that the TES groups were cleaved during the dihydroxylation step to give extremely polar triols and the use of TBDMS groups was unsatisfactory as they did not spontaneously cleave during the cyclization step and, instead, gave unwanted products.

15

General Procedure for the Synthesis of Amides 4: To a stirred suspension of AlCl3 (0.1 mmol) in CH2Cl2 (5 mL) under an atmosphere of N2, a solution of (E)-4-(but-2-enyl)amine 5 (1 mmol) in CH2Cl2 (5 mL) was added dropwise, followed by diisopropylethylamine (1.5 mmol) dropwise. The resultant mixture was stirred at r.t. for 15 min, then a solution of acid chloride 6 (1.2 mmol) in CH2Cl2 (5 mL) was added dropwise and the reaction mixture was stirred at r.t. for 24 h. Aq NaOH (10 mL) was added, the layers were separated and the aqueous layer was further extracted with CH2Cl2 (3 × 15 mL). The combined organic extracts were washed with brine (20 mL), dried (MgSO4) and the solvent was removed in vacuo. The crude product was purified by flash chromatography to give the amides 4 in 24-88% yields. General Procedure for the Synthesis of Ketones 7: To a solution of aryl bromide (1.2 mmol) in THF (20 mL) under an atmosphere of N2 at -78 ˚C, was added, either n-BuLi (1.2 mmol for 8a) or t-BuLi (2.4 mmol for 8b-d) and the resultant solution was stirred for 10 min. A solution of amide 4 (1 mmol) in THF (5 mL) was then added dropwise and the mixture was stirred at -78 ˚C and slowly warmed to r.t. over 2-18 h. Sat. NH4Cl solution (20 mL) was added and the aqueous mixture was extracted with EtOAc (3 × 30 mL). The combined organic extracts were dried (MgSO4) and the solvent was removed in vacuo. The crude product was purified by flash chromatography to give the ketones 7 in 43-96% yields.
General Procedure for the Synthesis of Tetrahydrofurans 12: To a solution of alcohol 11 (1 mmol) and Et3N (1.6 mmol) in CH2Cl2 (25 mL) under an atmosphere of N2 was added MsCl (1.3 mmol) and the reaction mixture was stirred for 1-2 h. Sat NaHCO3 solution (10 mL) was added, the layers were separated and the aqueous layer was further extracted with CH2Cl2 (3 × 15 mL). The combined organic extracts were dried (Na2SO4) and the solvent was removed in vacuo. The crude product was purified by flash chromatography to give the tetrahydrofurans 12 in 63-81% yields.

16

Spectroscopic Data for Selected Products:
(±)-Dimethoxy-4-epi-larreatricin (12a): ¹H NMR (400 MHz, CDCl3): δ = 1.01 (m, 6 H, CHCH 3), 1.78 (m, 2 H, CH), 3.78 (s, 6 H, OMe), 4.63 (d, J = 9.0 Hz, 2 H, OCH), 6.87 (d, J = 8.7 Hz, 4 H, 2′-Ar), 7.31 (d, J = 8.4 Hz, 4 H, 3′-Ar). ¹³C NMR (100 MHz, CDCl3): δ = 13.7 (2 × CH3), 51.0 (2 × CH), 55.2 (OCH3), 88.0 (2 × CH), 113.6 (2 × CH), 127.4 (2 × CH), 134.5 (q), 159.0(q). IR (film): 2954, 2833, 1609, 1584, 1507, 1454, 1299, 1239, 1169, 1025, 821, 726 cm. MS (EI+): m/z (%) = 312 (8) [M+], 176 (100), 161 (60), 135 (12), 77 (6). Anal. Calcd for C20H24O3 [M+]: 312.17254. Found: 312.17286. The ¹H NMR data was in agreement with the literature values.¹4(±)-2-(3,4-Dimethoxyphenyl)-3,4-dimethyl-5-(3-methoxy-4-hydroxyphenyl)tetrahydrofuran (12b):
¹H NMR (400 MHz, CDCl3): δ = 1.12 (d, J = 6.4 Hz, 6 H, 3- and 4-CH3), 1.95-2.02 (m, 2 H, 3- and 4-H), 3.91 (s, 9 H, OMe), 4.75 (d, J = 10.0 Hz, 2 H, 2- and 5-H), 5.69 (br s, 1 H, OH), 6.81-6.92 (m, 6 H, Ar-H). ¹³C NMR (100 MHz, CDCl3): δ = 14.3 (2 × CH3), 47.8 (2 × CH, C-3 and C-4), 56.0 (3 × OCH3), 86.4 (2 × CH, C-2 and C-5), 108.3 (2 × CH), 114.1 (2 × CH), 119 (2 × CH), 129.1 (q), 140.1 (q), 146.1 (q), 146.8 (q). IR (film): 3426.6, 2967.1, 1766, 1607.1, 1519, 1459.9, 1380.0, 1275.8, 1237.2, 1176, 1033 cm. MS (ESI): m/z (%) = 381 (11) [M + Na]+, 359 (8)
[M + H]+, 259 (83), 237 (100), 191 (22). Anal. Calcd for C21H27O5: 359.1858 [M + H+]. Found: 359.1864.
(±)-Talaumidin (rac -2, 12c): ¹H NMR (400 MHz, CDCl3):
δ = 1.03 (m, 6 H, 3- and 4-CH3), 1.78 (m, 2 H, 3- and 4-H), 3.91 (s, 3 H, OCH3), 4.61 (d, J = 5.2 Hz, 2 H, 2- and 5-H), 5.59 (br s, 1 H, OH), 5.94 (s, 2 H, OCH2O), 6.77-6.93 (m, 6 H, Ar-H). ¹³C NMR (100 MHz, CDCl3): δ = 13.8 (CH3), 50.8 (CH), 51.1 (CH), 55.9 (OCH3), 88.2 (CH), 88.4 (CH), 100.9 (CH2), 106.5 (CH), 107.9 (CH), 108.5 (CH), 114.0 (CH), 119.4 (CH), 119.6 (CH), 134.1 (q), 136.5 (q), 145.1 (q), 146.5 (q). IR (film): 3468.5, 2959, 1770, 1609, 1515, 1488, 1447, 1365, 1273, 1243, 1036, 934 cm. MS (ESI): m/z (%) = 343 (100) [M + H]+, 339 (8), 325 (17). Anal. Calcd for C20H23O5: 343.1545 [M + H+]. Found: 343.1551. The ¹H- and ¹³C NMR data were in agreement with the literature values.²b(±)-Fragransin A2 (rac -1, 12d): ¹H NMR (300 MHz, CDCl3): δ = 1.05 (d, J = 6.3 Hz, 6 H, 3- and 4-CH3), 1.76 (m, 2 H, 3- and 4-H), 3.91 (s, 6 H, OCH3), 4.61 (d, J = 9.3 Hz, 2 H, 2- and 5-H), 5.55 (s, 2 H, OH), 6.78-6.94 (m, 6 H, Ar-H). ¹³C NMR (75 MHz, CDCl3): δ = 13.8 (2 × CH3), 50.8 (CH), 51.1 (CH), 56.0 (OCH3), 88.2 (CH), 88.4 (CH), 106.6 (CH), 107.9 (CH), 108.6 (CH), 114.0 (CH), 119.4 (CH), 119.7 (CH), 134.1 (q), 136.9 (q), 145.1 (q), 146.9 (q). IR (film): 3451, 2958, 2926, 1772, 1607, 1515, 1460, 1247, 1036
cm. MS (ESI): m/z (%) = 343 (100) [M + H]+, 321 (6), 301 (8), 292 (10), 259 (60). Anal. Calcd for C20H23O5: 343.1545 [M - H+]. Found: 343.1536. The ¹H- and ¹³C-NMR data were in agreement with the literature values.²b
2,5-Di(4-methoxyphenyl)-3-methyl-4-propyltetrahydro-furan (12e): ¹H NMR (400 MHz, CDCl3): δ = 0.83 (m, 3 H, CH2CH2CH 3), 1.23 (m, 2 H, CH2CH 2CH3), 1.34 (d, J = 6.8 Hz, 3 H, 3-CH3), 1.51 (m, 2 H, CH 2CH2CH3), 2.09 (m, 1 H, 4-H), 2.45 (m, 1 H, 3-H), 3.82 (s, 6 H, OMe), 4.84 (d, J = 9.6 Hz, 2 H, 2- and 5-H), 6.90 (d, J = 8.4 Hz, 4 H, Ar-H), 7.26 (d, J = 8.8 Hz, 4 H, Ar-H). ¹³C NMR (100 MHz, CDCl3):
δ = 14.2 (CH3), 14.7 (CH3), 20.3 (CH2), 33.3 (CH2), 42.0 (CH), 51.7 (CH), 55.3 (OCH3), 85.2 (2 × CH), 114.0 (2 × CH), 128.3 (2 × CH), 140.2 (q), 160.0(q). IR (film): 2958, 2339, 1773, 1613, 1516, 1462, 1299, 1251, 1171, 1034, 988, 833 cm. MS (ESI): m/z (%) = 363 (3) [M + Na]+, 303 (4), 271 (100). Anal. Calcd for C22H28O3Na: 363.1931 [M + Na+]. Found: 363.1926.
2-(4-Methoxyphenyl)-3,4-dimethyl-5-phenyl tetrahydro-furan (12g): ¹H NMR (400 MHz, CDCl3): δ = 0.63 (d, J = 6.0 Hz, 3 H, 4-CH3), 1.04 (d, J = 6.0 Hz, 3 H, 3-CH3), 1.78 (m, 1 H, 3-H), 2.25 (m, 1 H, 4-H), 3.83 (s, 3 H, OCH3), 4.40 (d, J = 9.0 Hz, 1 H, 2-H), 5.17 (d, J = 9.0 Hz, 1 H, 5-H), 6.93 (d, J = 9.0 Hz, 2 H, Ar-H), 7.28-7.35 (m, 5 H, Ar-H), 7.43 (d, J = 9.0 Hz, 2 H, Ar-H). ¹³C NMR (100 MHz, CDCl3): δ = 15.0 (CH3), 15.3 (CH3), 45.9 (CH), 48.5 (CH), 55.3 (OCH3), 83.0 (CH), 87.3 (CH), 113.8 (CH), 127.0 (CH), 127.8 (CH), 127.9 (CH), 132.9 (q), 141.0(q), 162.6 (q). IR (film): 2958, 2836, 1613, 1515, 1454, 1222, 1036, 825, 704 cm. MS (ESI): m/z (%) = 283 (100) [M + H]+, 265 (42), 177 (19), 149 (16), 121 (36). Anal. Calcd for C19H23O2: 283.1693 [M + H+]. Found: 283.1680.