RSS-Feed abonnieren
DOI: 10.1055/s-0029-1218388
Propylphosphonic Anhydride (T3P®): A Remarkably Efficient Reagent for the One-Pot Transformation of Aromatic, Heteroaromatic, and Aliphatic Aldehydes to Nitriles
Publikationsverlauf
Publikationsdatum:
27. November 2009 (online)
Abstract
Propylphosphonic anhydride has been demonstrated to be an efficient reagent for the transformation of aromatic, heteroaromatic, and aliphatic aldehydes to respective nitriles in excellent yields. This procedure offers simple and one-pot access to nitriles and highlights the synthetic utility of T3P® as a versatile reagent in organic chemistry.
Key words
propylphosphonic anhydride - dehydration - nitriles - aldoximes - electrophilic activation
- Supporting Information for this article is available online:
- Supporting Information
- 1
Sandier SR.Karo W. In Organic Functional Group Preparations Vol. 12-I: Academic Press; San Diego: 1983. p.Chap. 17 -
2a
Mowry DT. Chem. Rev. 1948, 42: 250 -
2b
Friedrich K.Wallensfels K. In The Chemistry of the Cyano GroupRappoport Z. Wiley-Interscience; New York: 1970. -
2c
North M. In Comprehensive Organic Functional Group TransformationsKatrizky AR.Meth-Cohn O.Rees CW. Pergamon; Oxford: 1995. p.617 -
3a
Katritzky AR.Zhang GF.Fan WQ. Org. Prep. Proced. Int. 1993, 25: 315 -
3b
Forey HG.Datlon DR. J. Chem. Soc., Chem. Commun. 1973, 628 -
3c
Kukhar VP.Pasternak VI. Synthesis 1974, 563 -
3d
Shinozaki H.Imaizumi M.Tajima M. Chem. Lett. 1983, 929 -
3e
Meshram HM. Synthesis 1992, 943 -
3f
Findlay JA.Tang CS. Can. J. Chem. 1967, 45: 1014 -
4a
Brackman W.Smit P. J. Recl. Trav. Chim. 1963, 82: 757 -
4b
Sato R.Itoh Y.Itep K.Nihina H.Goto T.Saito M. Chem. Lett. 1984, 1913 -
4c
Erman MB.Snow JW.Williams MJ. Tetrahedron Lett. 2000, 41: 6749 -
4d
Talukdar S.Hsu JL.Chou TC.Fang JM. Tetrahedron Lett. 2001, 42: 1103 -
4e
Bandgar BP.Makone SS. Synth. Commun. 2006, 36: 1347 -
5a
Karmarkar SN.Kelkar SL.Wadia MS. Synthesis 1985, 510 -
5b
Blatter HM.Lukaszewski H.de Stevens G. J. Am. Chem. Soc. 1961, 83: 2203 -
5c
Olah GA.Keumi T. Synthesis 1979, 112 ; and references cited therein -
5d
Dauzonne D.Demerseman P.Royer R. Synthesis 1981, 739 -
5e
Saednya A. Synthesis 1982, 190 -
5f
Ganboa I.Palomo C. Synth. Commun. 1983, 13: 219 -
5g
Capdevielle P.Lavigne A.Maumy M. Synthesis 1989, 451 -
5h
Bose DS.Narsaiah AV. Tetrahedron Lett. 1998, 39: 6533 -
5i
Kumar HMS.Reddy BVS.Reddy PT.Yadav JS. Synthesis 1999, 586 -
6a
Wissmann H.Kleiner H.-J. Angew. Chem., Int. Ed. Engl. 1980, 19: 133 -
6b
Escher R.Bünning P. Angew. Chem., Int. Ed. Engl. 1986, 25: 277 - For a brief review of the reagent, see:
-
7a
Llanes García AL. Synlett 2007, 1328 -
7b
Schwarz M. Synlett 2000, 1369 - 8
Meudt A,Scherer S, andNerdinger S. inventors; WO 2005070879. ; Chem. Abstr. 2005, 143, 172649 - 9
Holla W,Napierski B, andRebenstock H.-P. inventors; DE 19802969. ; Chem. Abstr. 1999, 131, 131507 - 10
Meudt A,Scherer S, andBöhm C. inventors; WO 2005123632. ; Chem. Abstr. 2005, 144, 69544 - 11
Olah GA.Narang SC.Fung AP.Gupta B.Balaram G. Synthesis 1980, 657 - 12
Wilson BD.Burness DM. J. Org. Chem. 1966, 31: 1565 - 13
Adler M,Baeurle S,Bryant J,Chen M,Chou Y.-L,Hrvatin P,Khim S.-K,Kochanny M,Lee W,Mamounas M,Meurer Odgen J,Phillips GB,Selchau V,West C,Ye B,Yuan S, andKrueger M. inventors; WO 2008/071451 A1.
References and Notes
General Procedure
for the Synthesis of Nitriles from Aldehydes
To a
mixture of aldehyde (0.01 mol), hydroxylamine hydrochloride (0.011
mol), and Et3N (0.011 mol) in DMF (10 mL) was added T3P
(0.011 mol, 50% soln in EtOAc), and the mixture was stirred
at 100 ˚C for 1-3 h. The completion of
reaction was monitored by TLC (5% EtOAc in hexane). The
mixture was cooled and carefully poured onto sat. aq NaHCO3 solution
(40 mL) and extracted with EtOAc (2 × 25
mL). The combined organic phase was washed with H2O (1 × 25
mL), brine (1 × 25 mL), and dried over
Na2SO4. On evaporating the solvent under vacuum,
the nitrile was obtained in good yield and purity (Note: Aliphatic nitriles
were extracted with Et2O or pentane).
Characterization Data for Compound 18
Off-white
solid; mp 194.2-195.9 ˚C. ¹H
NMR (400 MHz, DMSO-d
6): δ = 14.65
(br s, 1 H), 8.37 (s, 1 H), 8.01 (dd, 1 H, J = 8.8,
1.2 Hz), 7.81 (d, 1 H, J = 8.8
Hz), 3.88 (s, 3 H). ¹³C NMR (100 MHz,
DMSO-d
6): δ = 165.7,
141.5, 127.7, 125.0, 123.2, 121.1, 119.0, 113.4, 112.1, 52.3. IR
(KBr): 3286, 2242 (CN), 1721, 1433, 1240, 738. ESI-MS (APCI, negative
mode) for C10H7N3O2: m/z = 200 [M - H]+.
Anal. Calcd (%) for C10H7N3O2:
C, 59.70; H, 3.51; N, 20.89. Found: C, 59.76; H, 3.55; N, 20.82.
Characterization Data for Compound 27
Pale
yellow liquid. ¹H NMR (400 MHz, DMSO-d
6): δ = 3.17 (s,
2 H), 1.94 (t, 2 H), 1.64 (s, 3 H), 1.55-1.49 (m, 2 H),
1.43-1.40 (m, 2 H), 0.98 (s, 6 H). ¹³C
NMR (100 MHz, DMSO-d
6): δ = 132.2,
127.7, 119.6, 38.6, 34.5, 32.1, 27.2, 19.5, 18.6, 15.3. IR (liquid
film): 2930, 2243 (CN), 1463, 1382 cm-¹.
MS (GC) for C11H17N: m/z = 163 [M - H]+.
Anal. Calcd (%) for C11H17N: C, 80.93;
H, 10.50; N, 8.58. Found: C, 80.99; H, 10.57; N, 8.52.