Subscribe to RSS
DOI: 10.1055/s-0029-1218536
Vinylepoxides as Versatile Substrates for Allylations of Amino Acids and Peptides
Publication History
Publication Date:
02 December 2009 (online)
Abstract
Vinyl epoxides are excellent substrates for Pd-catalyzed allylic alkylations of chelated enolates. Nucleophilic attack on the predominantly formed syn/syn π-allyl complexes occurs regioselectively at the distal position. The E-configured product is formed preferentially, depending on the substitution pattern and the reaction conditions used.
Key words
allylic alkylation - amino acids - chelates - epoxides - palladium
-
1a
Hegedus LS. Organische Synthese mit Übergangsmetallen Wiley-VCH; Weinheim: 1995. -
1b
Kazmaier U.Pohlman M. In Metal Catalyzed C-C and C-N Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.531-583 ; and references cited therein -
2a
Consiglio G.Waymouth RM. Chem. Rev. 1989, 89: 257 -
2b
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
2c
Helmchen G. J. Organomet. Chem. 1999, 576: 203 -
2d
Pfaltz A.Lautens M. In Comprehensive Asymmetric Catalysis I-IIIJacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.833 -
2e
Acemoglu L.Williams JMJ. In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E.-I.de Meijere A. Eds.; Vol. 2: John Wiley, New York: 2002. p.1689 -
2f
Tsuji J. In Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 2:Negishi E.-I.de Meijere A. John Wiley; New York: 2002. p.1689 -
2g
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
2h
Trost BM.Jiang C. Org. Lett. 2003, 5: 1563 -
2i
Trost BM.Xu J. J. Am. Chem. Soc. 2005, 127: 2846 -
2k
Trost BM.Brennan MK. Org. Lett. 2006, 8: 2027 -
3a
Poli G.Giambastiani G.Heumann A. Tetrahedron 2000, 56: 5959 -
3b
Faller JW.Wilt JC.Parr J. Org. Lett. 2004, 6: 1301 -
4a
Hayashi T.Yamamoto A.Hagihara T. J. Org. Chem. 1986, 51: 723 -
4b
Sjögren MPT.Hansson S.Åkermark B.Vitagliano A. Organometallics 1994, 13: 1963 -
4c
Hayashi T.Kawatsura M.Uozumi Y. J. Am. Chem. Soc. 1998, 120: 1681 -
4d
Blacker AJ.Clarke ML.Loft MS.Williams JMJ. Org. Lett. 1999, 1: 1969 -
5a
Trost BM.Bunt RC. J. Am. Chem. Soc. 1996, 118: 235 -
5b
Lloyd-Jones GC.Stephen SC. Chem. Eur. J. 1998, 4: 2539 -
5c
Poli G.Scolastico C. Chemtracts 1999, 12: 837 -
5d
Lloyd-Jones GC.Stephen SC.Murray M.Butts CP.Vyskocil S.Kocovsky P. Chem. Eur. J. 2000, 6: 4348 -
5e
Lloyd-Jones GC. Synlett 2001, 161 -
5f
Fairlamb IJS.Lloyd-Jones GC.Vyskocil S.Kocovsky P. Chem. Eur. J. 2002, 8: 4443 -
5g
Gouriou L.Lloyd-Jones GC.Vyskovil S.Kocovsky P. J. Organomet. Chem. 2003, 687: 525 -
5h
Lussem BJ.Gais H.-J. J. Org. Chem. 2004, 69: 4041 -
5i
Faller JW.Sarantopoulos N. Organometallics 2004, 23: 2179 -
6a
Sprinz J.Kiefer M.Helmchen G.Reggelin M.Huttner G.Walter O.Zsolnai L. Tetrahedron Lett. 1994, 35: 1523 -
6b
Brown JM.Hulmes DI.Guiry PJ. Tetrahedron 1994, 50: 4493 -
6c
Blöchl PE.Togni A. Organometallics 1996, 15: 4125 -
6d
Lloyd-Jones GC.Stephen SC. Chem. Commun. 1998, 2321 -
6e
Goldfuss B.Kazmaier U. Tetrahedron 2000, 56: 6493 -
6f
Fagnou K.Lautens M. Angew. Chem. Int. Ed. 2002, 41: 26 ; Angew. Chem. 2002, 114, 26 -
7a
Fristrup P.Jensen T.Hoppe J.Norrby P.-O. Chem. Eur. J. 2006, 12: 5352 -
7b
Svensen N.Fristrup P.Tanner D.Norrby P.-O. Adv. Synth. Catal. 2007, 349: 2631 -
7c
Kazmaier U.Stolz D.Krämer K.Zumpe F. Chem. Eur. J. 2008, 14: 1322 -
9a
Trost BM.Molander GA. J. Am. Chem. Soc. 1981, 103: 5969 -
9b
Tsuji J.Kataoka H.Kobayashi Y. Tetrahedron Lett. 1981, 22: 2575 -
10a
Tsuji J.Kataoka H.Kobayashi Y. Tetrahedron Lett. 1981, 27: 2575 -
10b
Trost BM.Warner RW. J. Am. Chem. Soc. 1982, 104: 6112 -
10c
Trost BM.Cossy J.
J. Am. Chem. Soc. 1982, 104: 6881 -
10d
Tsuda T.Horii Y.Nakagawa Y.Ishida T.Saegusa T. J. Org. Chem. 1989, 54: 977 -
10e
Szabó KJ. Chem. Soc. Rev. 2001, 30: 136 -
10f
Norsikian S.Chang C.-W. Curr. Org. Synth. 2009, 6: 264 -
11a
Trost BM.Ito N.Greenspan PD. Tetrahedron Lett. 1993, 34: 1421 -
11b
Trost BM.Bunt RC. Angew. Chem., Int. Ed. Engl. 1996, 35: 99 ; Angew . Chem . 1996, 108, 70 -
11c
Banwell MG.Haddad N.Hudlicky T.Nugent TC.Mackay MF.Richards SL. J. Chem. Soc., Perkin Trans. 1 1997, 1779 -
11d
Trost BM.Brown BS.McEachern EJ.Kuhn O. Chem. Eur. J. 2003, 9: 4442 -
11e
Trost BM.Lemoine RC. Tetrahedron Lett. 1996, 37: 9161 -
12a
Kazmaier U.Zumpe FL. Angew. Chem. Int. Ed. 1999, 38: 1468 ; Angew. Chem. 1999, 111, 1572 -
12b
Kazmaier U.Maier S.Zumpe FL. Synlett 2000, 1523 -
12c
Weiss TD.Helmchen G.Kazmaier U. Chem. Commun. 2002, 1270 -
12d
Kazmaier U. Curr. Org. Chem. 2003, 317 -
12e
Kazmaier U.Stolz D. Angew. Chem. Int. Ed. 2006, 45: 3072 ; Angew. Chem. 2006, 118, 3143 -
12f
Basak S.Kazmaier U. Org. Lett. 2008, 10: 501 -
13a
Kazmaier U.Deska J.Watzke A. Angew. Chem. Int. Ed. 2006, 45: 4855 ; Angew. Chem. 2006, 118, 4973 -
13b
Deska J.Kazmaier U. Angew. Chem. Int. Ed. 2007, 46: 4570 ; Angew. Chem. 2007, 119, 4654 -
13c
Deska J.Kazmaier U. Chem. Eur. J. 2007, 13: 6204 -
13d
Deska J.Kazmaier U. Curr. Org. Chem. 2008, 12: 7355 -
14a
Kazmaier U.Zumpe FL. Angew. Chem. Int. Ed. 2000, 39: 802 ; Angew. Chem. 2000, 112, 805 -
14b
Kazmaier U.Zumpe FL. Eur. J. Org. Chem. 2001, 4067 -
14c
Kazmaier U.Pohlman M. Synlett 2004, 623 -
14d
Kazmaier U.Pohlmann M.Lindner T. J. Org. Chem. 2004, 69: 6909 -
14e
Kazmaier U.Lindner T. Angew. Chem. Int. Ed. 2005, 44: 3303 ; Angew. Chem. 2005, 117, 3368 -
14f
Lindner T.Kazmaier U. Adv. Synth. Catal. 2005, 347: 1687 -
15a
Kazmaier U.Krämer K. J. Org. Chem. 2006, 71: 8950 -
15b
Krämer K.Deska J.Hebach C.Kazmaier U. Org. Biomol. Chem. 2009, 7: 103 - These types of epoxides were obtained via a modified Corey-Chaykovsky protocol, see:
-
16a
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1962, 84: 867 -
16b
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1353 -
16c
Merz A.Märkl G. Angew. Chem., Int. Ed. Engl. 1973, 12: 845 ; Angew. Chem. 1973, 85, 867 -
16d For a review, see:
Aggarwal VK.Richardson J. Chem. Commun. 2003, 264 4; and references cited therein - These types of epoxides are accessible via molybdenum-catalyzed hydrostannation of allenols and subsequent metal-iodine exchange/cyclization, see:
-
17a
Kazmaier U.Lucas S.Klein M. J. Org. Chem. 2006, 71: 2429 -
17b
Kazmaier U.Dörrenbächer S.Wesquet A.Lucas S.Kummeter M. Synthesis 2007, 320
References and Notes
The syn/anti terminology was used to describe the relative orientation of the substituents at the allylic position relative to the hydrogen at the central position of the π-allyl-Pd complex.
18General procedure for the allylic alkylation with vinyl epoxides: In a Schlenk tube, hexamethyldisilazane (168 mg, 1.04 mmol, 2.8 equiv) was dissolved in anhydrous THF (2.0 mL). After the solution had been cooled to -78 ˚C, n-BuLi (1.6M, 0.58 mL, 0.93 mmol, 2.5 equiv) was added slowly. The solution was stirred for 10 min before the cooling bath was removed and the solution was stirred for a further 10 min. In a second Schlenk flask, ZnCl2 (56 mg, 0.41 mmol, 1.1 equiv) was dried with a heat gun under vacuum then dissolved in THF (2.0 mL). After the solution had been cooled to room temperature, Tfa-Gly-OtBu (85 mg, 0.374 mmol, 1 equiv) was added. The freshly prepared LHMDS solution was cooled again to -78 ˚C before the Tfa-Gly-OtBu/ZnCl2 solution was added slowly. This solution was stirred for 30 min at -78 ˚C. At the same time, a solution of [(allyl)PdCl]2 (1.4 mg, 3.8 µmol, 1.5 mol%) and Ph3P (4.9 mg, 18.8 µmol, 7.5 mol%) was prepared in THF (0.5 mL). After stirring for 5 min the vinylepoxide (0.25 mmol, 0.7 equiv) was added and the solution was added directly to the enolate at -78 ˚C. The reaction mixture was allowed to warm to r.t. overnight then diluted with ether and hydrolyzed with 1M HCl. The layers were separated and the aqueous layer was extracted twice with ether. The combined organic layers were dried (Na2SO4), the solvent was evaporated in vacuo, and the crude product was purified by flash chromatography (silica gel; hexanes-EtOAc).
19Spectroscopic and analytical data
of some selected products.
Compound
(
E
)-4: ¹H
NMR (400 MHz, CDCl3): δ = 6.96 (d, J = 4.9 Hz,
1 H), 5.75 (dtt, J = 15.3,
5.4, 1.0 Hz, 1 H), 5.56 (dtt, J = 15.3,
7.3, 1.4 Hz, 1 H), 4.54 (q, J = 5.5
Hz, 1 H), 4.10 (dd, J = 5.4,
1.4 Hz, 2 H), 2.69 (dddd, J = 14.2,
7.2, 5.2, 1.0 Hz, 1 H), 2.54 (dddd, J = 14.2,
7.2, 6.1, 1.0 Hz, 1 H), 1.49 (s, 9 H); ¹³C
NMR (100 MHz, CDCl3): δ = 169.2, 156.6 (J = 37.9 Hz),
134.5, 124.2, 115.6 (J = 287.6
Hz), 83.6, 62.9, 52.6, 34.6, 28.0.
Compound
(
Z
)-4: ¹H
NMR (400 MHz, CDCl3): δ (selected signals) = 7.48
(br s, 1 H), 5.88 (dtt,
J = 10.9,
6.7, 1.3 Hz, 1 H), 5.50 (dtt, J = 10.9,
7.9, 1.1 Hz, 1 H), 4.46 (q, J = 6.8
Hz, 1 H), 4.19 (dd, J = 6.7,
1.1 Hz, 2 H), 2.75 (dddd, J = 14.4, 7.9,
4.9, 1.1 Hz, 1 H), 2.65 (dddd, J = 14.4,
7.9, 6.8, 1.1 Hz, 1 H), 1.49 (s, 9 H). ¹³C
NMR (100 MHz, CDCl3): δ = 169.2, 132.5,
126.3, 83.4, 57.8, 52.5, 29.4, 27.9. HRMS (CI):
m/z [M + H]+ calcd
for C12H19F3NO4: 298.1221;
found: 298.1241. Anal. Calcd for for C12H18F3NO4 (297.27):
C, 48.48; H, 6.10; N, 4.71. Found: C, 48.32; H, 6.02; N, 4.96.
Compound 5a: Major diastereomer: ¹H
NMR (400 MHz, CDCl3): δ = 7.33 (dd J = 8.2,
6.9 Hz, 2 H), 7.28 (t, J = 7.1 Hz,
1 H), 7.22 (d, J = 8.5
Hz, 2 H), 6.68 (d, J = 8.6
Hz, 1 H), 5.98 (ddt,
J = 15.4,
8.5, 1.5 Hz, 1 H), 5.79 (dtd, J = 15.4,
5.2, 0.8 Hz, 1 H), 4.85 (dd, J = 8.6,
5.9 Hz, 1 H), 4.16 (dd, J = 5.2,
1.0 Hz, 2 H), 3.93 (dd, J = 8.4,
6.0 Hz, 1 H), 1.38 (s, 9 H). ¹³C NMR
(100 MHz, CDCl3): δ = 168.4, 156.7
(J = 37.5 Hz),
138.0, 133.3, 128.7, 128.1, 128.1, 127.7, 115.6 (J = 287.9
Hz), 83.6, 62.7, 56.9, 50.7, 27.8. Minor diastereomer: ¹H
NMR (400 MHz, CDCl3): δ (selected signals) = 6.85
(d, J = 8.4
Hz, 1 H), 4.78 (t, J = 8.5
Hz, 1 H), 4.11 (dd, J = 5.2,
1.1 Hz, 2 H), 3.65 (t, J = 8.8
Hz, 1 H), 1.22 (s, 9 H). ¹³C NMR (100
MHz, CDCl3): δ = 168.8, 138.3, 133.1,
128.9, 128.7, 128.2, 127.6, 115.7 (J = 287.5
Hz), 114.2, 83.3, 62.6, 52.7, 27.5. HRMS (CI): m/z [M - C4H9O]+ calcd
for C14H13F3NO3: 300.0848;
found: 300.0861.
Compound 8: ¹H
NMR (400 MHz, CDCl3): δ = 6.88 (d, J = 5.0 Hz,
1 H), 5.59 (ddt, J = 15.3,
6.2, 0.8 Hz 1 H), 5.49 (dtd, J = 15.3,
7.6, 0.9 Hz, 1 H), 4.52 (q,
J = 5.3
Hz, 1 H), 4.25 (quint, J = 6.8
Hz, 1 H), 3.87 (dt, J = 8.1,
7.3 Hz, 1 H), 3.76 (dt, J = 8.0,
6.4 Hz, 1 H), 2.67 (dddd, J = 13.8,
7.5, 5.4, 0.8 Hz, 1 H), 2.53 (dq, J = 13.7,
5.9 Hz, 1 H), 2.02 (m, 1 H), 1.95-1.82 (m, 2 H), 1.56 (m,
1 H), 1.49 (s, 9 H). ¹³C NMR (100 MHz,
CDCl3): δ = 169.2, 156.4 (J = 37.7 Hz),
136.8, 123.3, 115.6 (J = 288.0
Hz), 83.5, 78.8, 68.0, 52.6, 34.3, 32.1, 28.0, 25.7. HRMS (CI): m/z [M - C4H9]+ calcd
for C11H13F3NO4: 280.0797;
found: 280.0793.
Compound 17a:
Major diastereomer: ¹H NMR (400 MHz, CDCl3): δ = 7.57
(d, J = 7.7
Hz, 1 H), 7.34-7.18 (m, 5 H), 6.47 (d, J = 7.6
Hz, 1 H), 5.61 (dt, J = 15.3,
5.6 Hz, 1 H), 5.47 (dt, J = 15.2,
7.2 Hz, 1 H), 4.70 (q, J = 7.3
Hz, 1 H), 4.46 (ddd, J = 7.5,
6.4, 5.0 Hz, 1 H), 4.03 (m, 2 H), 3.11 (dd, J = 13.8,
7.7 Hz, 2 H), 2.56 (dt, J = 14.0,
6.7 Hz, 1 H), 2.37 (dt, J = 14.0,
6.6 Hz, 1 H), 1.46 (s, 9 H). ¹³C NMR
(100 MHz, CDCl3): δ = 170.0, 169.2,
157.0 (J = 37.6
Hz), 135.4, 133.9, 129.2, 128.6, 127.3, 125.2, 115.6 (J = 287.6
Hz), 82.6, 62.7, 54.7, 52.5, 37.9, 34.9, 27.9. Minor diastereomer: ¹H
NMR (400 MHz, CDCl3): δ (selected signals) = 7.47
(d, J = 7.8
Hz, 1 H), 6.39 (d,
J = 7.7
Hz, 1 H), 5.27 (dt, J = 15.1, 7.3
Hz, 1 H), 1.43 (s, 9 H). ¹³C NMR (100
MHz, CDCl3):
δ = 170.0, 169.0,
156.9 (J = 37.8
Hz), 135.4, 133.9, 129.2, 128.8, 127.3, 125.0, 82.7, 62.8, 52.3,
38.4, 34.7, 27.9. HRMS (CI): m/z [M + H]+ calcd
for C21H28F3N2O5: 445.1906;
found: 445.1942.