References and Notes
1a
Aziridines and Epoxides in Organic Synthesis
Yudin AK.
Wiley-VCH;
Weinheim:
2006.
1b
Jacobsen EN.
Comprehensive Asymmetric
Catalysis
Vol. 2:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
p.607
1c
Pearson WH.
Lian BW.
Bergmeier SC. In Comprehensive
Heterocyclic Chemistry II
Vol. 1A:
Padwa A.
Pergamon;
Oxford:
1996.
p.1
1d
Rai KML.
Hassner A. In Comprehensive Heterocyclic Chemistry II
Vol.
1A:
Padwa A.
Pergamon;
Oxford:
1996.
p.6196
2 For useful biological activities
of aziridines, see: Yadav
LD.
Rai A.
Rai VK.
Awasthi C.
Tetrahedron Lett.
2008,
49:
687 ; and references therein
For the synthesis of oseltamivir,
the anti-influenza neuraminidase inhibitor, using an aziridine intermediate, see:
3a
Nie L.-D. Shi X.-X.
Ko KH. Lu W.-D.
J. Org. Chem.
2009,
74:
3970
3b
Yamatsugu K. Yin L.
Kamijo S.
Kimura Y. Kanai M.
Shibasaki M.
Angew. Chem. Int. Ed.
2009,
48:
1070
3c
Satoh N.
Akiba T.
Yokoshima S.
Fukuyama T.
Tetrahedron
2009,
65:
3239
3d
Trost BM.
Zhang T.
Angew. Chem.
Int. Ed.
2008,
47:
3759
3e
Shibasaki M.
Kanai M.
Eur. J. Org. Chem.
2008,
1839
3f
Yeung Y.-Y.
Hong S.
Corey EJ.
J.
Am. Chem. Soc.
2006,
128:
6310
3g
Fukuta Y.
Mita T.
Fukuda N.
Kanai M.
Shibasaki M.
J. Am.
Chem. Soc.
2006,
128:
6312
For azinomycins, see:
4a
Hodgkinson TJ.
Shipman M.
Tetrahedron
2001,
57:
4467
4b
Coleman RS.
Kong
JS.
Richardson TE.
J. Am. Chem. Soc.
1999,
121:
9088
4c
Coleman RS.
Li J.
Navarro A.
Angew.
Chem. Int. Ed.
2001,
40:
1736
5
Remers WA. In The Chemistry of
Antitumor Antibiotics
Vol. 1:
Wiley-Interscience;
New
York:
1979.
p.242
5b
Kasai M.
Kono M.
Synlett
1992,
778
6a
Taylor AM.
Schreiber SL.
Tetrahedron Lett.
2009,
50:
3230
6b
Chan JWW.
Ton TMU.
Zhang Z.
Xu Y.
Chan PWH.
Tetrahedron Lett.
2009,
50:
161
6c
Singh GS.
D’hooghe M.
De
Kimpe N.
Chem. Rev.
2007,
107:
2080
6d
Muller P.
Fruit C.
Chem. Rev.
2003,
2905
6e
Sweeney JB.
Chem. Soc. Rev.
2002,
31:
247
6f
Ibuka I.
Chem.
Soc. Rev.
1998,
27:
145
6g
Osborn
HMI.
Sweeney JB.
Tetrahedron:
Asymmetry
1997,
8:
1693
6h
Li A.-H.
Dai L.-X.
Aggarwal VK.
Chem.
Rev.
1997,
97:
2341
6i
Tanner D.
Angew.
Chem., Int. Ed. Engl.
1994,
33:
599
7a
Minakata S.
Morino Y.
Oderaotoshi Y.
Komatsu M.
Chem.
Commun.
2007,
3337
7b
D’hooghe M.
Boelens M.
Piqueur J.
Kimpe N.
Chem. Commun.
2007,
1927
8a
Fioravanti S.
Morea S.
Morreale A.
Pellacani L.
Tardella PA.
Tetrahedron
2009,
65:
484
8b
Chigboh K.
Morton D.
Nadin A.
Stockman RA.
Tetrahedron Lett.
2008,
49:
4768
8c
Duan P.-W.
Chiu C.-C.
Lee W.-D.
Pan LS.
Venkatesham U.
Tzeng Z.-H.
Chen K.
Tetrahedron:
Asymmetry
2008,
19:
682
8d
Fernandez I.
Valdivia V.
Gori B.
Alcudia F.
Alvarez E.
Khiar N.
Org. Lett.
2005,
7:
1307
8e
Ulukanli S.
Karabuga S.
Celik A.
Kazaz C.
Tetrahedron Lett.
2005,
46:
197
8f
Chenna PHD.
Peillard FR.
Dauban P.
Dodd RH.
Org.
Lett.
2004,
6:
4503
8g
Cavallo AS.
Roje M.
Welter R.
Sinjic V.
J. Org. Chem.
2004,
69:
1409
8h
Redlich M.
Hossain MM.
Tetrahedron Lett.
2004,
45:
8987
8i
Calhorda MJ.
Vaz PD.
Chemtracts:
Inorg. Chem.
2004,
17:
396
8j
Barros MT.
Maycock CD.
Ventura MR.
Tetrahedron Lett.
2002,
43:
4329
8k
Gillespie KM.
Sanders CJ.
Shaughnessy PO.
Westmoreland I.
Thickitt CP.
Scott P.
J.
Org. Chem.
2002,
67:
3450
8l
Nishimura M.
Minakata S.
Takahashi T.
Oderaotoshi Y.
Komatsu M.
J.
Org. Chem.
2002,
67:
2101
8m
Aggarwal VK.
Alonso E.
Ferrara M.
Spey
SE.
J.
Org. Chem.
2002,
67:
2335
8n
Wei H.-X.
Kim
SH.
Li G.
Tetrahedron
2001,
57:
8401
9
Pereira MM.
Santos PPO.
Reis LV.
Lobo AM.
Prabhakar S.
J. Chem. Soc., Chem. Commun.
1993,
38
10a
Antunes MM.
Bonifácio VDB.
Nascimento CC.
Lobo AM.
Branco PS.
Prabhakar S.
Tetrahedron
2007,
63:
7009
10b
Antunes AMM.
Marto SJ.
Branco PS.
Prabhakar S.
Lobo AM.
Chem. Commun.
2001,
405
11a
Aires-de-Sousa J.
Prabhakar S.
Lobo AM.
Rosa AM.
Gomes MJS.
Corvo MC.
Williams DJ.
White AJP.
Tetrahedron: Asymmetry
2002,
12:
3349
11b
Aires-de-Sousa J.
Lobo AM.
Prabhakar S.
Tetrahedron Lett.
1996,
37:
3183
12
Murugan E.
Siva A.
Synthesis
2005,
2022
13a
Davis FA.
Wu Y.
Yan H.
McCoull W.
Prasad
KR.
J. Org. Chem.
2003,
68:
2410
13b
Davis FA.
Zhou P.
Reddy GV.
J. Org. Chem.
1994,
59:
3243
14 The lithium salt of (S
S)-(+)-1 was prepared as in: Wenschuh V.
Fritzsche B.
J. Prakt.
Chem.
1970,
312:
129 ;
its configuration stability in the chiral sulfur was ascertained
by recovering (S
S)-(+)-1 with the same specific rotation of +85.6
(c 0.95, CH3Cl) from the salt
15 This compound is commercially available
from Sigma-Aldrich Co (http://www.sigmaaldrich.com).
All α-bromo(iodo)olefins 2 were obtained by dihalogenation of the
double bond followed by base-catalyzed elimination of the β-halogen
while reforming the olefin:
16a Compound 2a: Kowalski CJ.
Weber AE.
Fields KW.
J. Org. Chem.
1982,
47:
5088
16b Compounds 2b,c: Bordwell
FG.
Wellman KM.
J.
Org. Chem.
1963,
28:
2544
16c Compound 2d: Smith AB.
Branca SJ.
Guaciaro
MA.
Wovkulich PM.
Korn A.
Org.
Synth., Coll. Vol. VII
1990,
271
16d Compound 2e: Johnson CR.
Adams
JP.
Braun MP.
Senanayake CBW.
Wovkulich
PM.
Uskokovic MR.
Tetrahedron Lett.
1992,
7:
917
16e Compound 2f: Wakui T.
Otsuji Y.
Imoto E.
Bull. Chem. Soc. Jpn.
1974,
2267
16f Compound 2g: Amice P.
Blanco L.
Conia JM.
Synthesis
1976,
196
16g Compound 2h: Crossland I.
Bock K.
Norrestam R.
Acta Chem. Scand., Ser. B
1985,
39:
7
16h
Nield CH.
J. Am. Chem. Soc.
1945,
67:
1145
16i Compound 2i: Carlier P.
Gelas-Mialhe Y.
Vessiere R.
Can. J. Chem.
1977,
55:
3190
17 CCDC 741870 contains the crystallographic
data which can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif,
by emailing data_request@ccdc.cam. ac.uk, or by
contacting CCDC, UK; fax: +44 (1223)336033.
18 For stabilization involving lithium
chelation in an eight-membered ring, see: Davis FA.
Reddy RT.
Reddy
RE.
J. Org. Chem.
1992,
57:
6387
19
Molander GA.
Stengel PJ.
Tetrahedron
1997,
53:
8887
20
Parker D.
Chem.
Rev.
1991,
91:
1441
21 Full coordinates and other information
about the calculations can be found via the following digital repository entries:
10042/to-2308, 10042/to-23010, 10042/to-2311, 10042/to-2312,
10042/to-2314 and 10042/to-2315, resolved as e.g.
http://dx.doi.org/10042/to-2308.
An interactive version of this figure can be viewed via the HTML
version of this article.
22
Typical Experimental
Procedure for Aziridination
To a dry THF solution
of 2-bromocyclohex-2-en-1-one (2a, 0.286
mmol), under nitrogen atmosphere and protected from light at -78 ˚C,
was added the lithium salt of chiral sulfinamide 1 (0.858
mmol) and the reaction allowed to reach r.t. After 30 min the solvent
was removed under reduced pressure and the residue dissolved in
EtOAc, washed with aq NH4Cl (10%), and after
drying and solvent removal, the remaining residue was purified via
silica gel PTLC (EtOAc-n-hexane,
1:1) to afford a mixture of the title aziridines 3Aa (major)/3Ba (minor); yield 62%. Separation of
both diastereomers was achieved by 2 × PTLC
of the mixture.
Compound 3Aa(major):
mp 70-71 ˚C (EtOAc-n-hexane); [α]D
²³ +64.6
(c 0.99, CHCl3).
Compound 3Ba(minor): mp 90-91 ˚C
(EtOAc-n-hexane); [α]D
²³ +89.4
(c 1.44, CHCl3). ¹H
NMR (400 MHz, CDCl3; 3Aa/3Ba = 77:23): δ = 7.60
(2 H, d, J = 8.2
Hz, minor), 7.55 (2 H, d, J = 8.2
Hz, major), 3.23 (1 H, d, J = 6.3
Hz, minor), 3.13 (1 H, d, J = 6.3
Hz, major), 3.06 (1 H, d, J = 6.3
Hz, major), 2.94 (1 H, d, J = 6.3
Hz, minor). MS (CI): m/z (%) = 249
(100) [M+]. Anal. Calcd for
C13H15NO2S: C, 62.62; H, 6.06;
N, 5.62. Found: C, 62.31; H, 6.34; N, 5.74.
Compound 3b: oil. ¹H NMR (400
MHz, CDCl3): δ = 7.59 (2 H, d, J = 8.1 Hz,
minor), 7.55 (2 H, d, J = 8.1
Hz, major), 3.08 (1 H, d, J = 6.3
Hz, major), 2.94 (1 H, d, J = 6.4
Hz, minor), 2.85 (1 H, d, J = 6.4
Hz, minor), 2.77 (1 H, d, J = 6.3 Hz,
major). HRMS: m/z calcd for
C15H19NO2S: 277.11365; found: 277.11344.
Anal. Calcd for C15H19NO2S: C,
64.95; H, 6.90; N, 5.05. Found: C, 65.27; H, 7.16; N, 4.95.
Compound 3c: mp 64-65 ˚C
(EtOAc-n-hexane). ¹H
NMR (400 MHz, CDCl3): δ = 3.79 (2 H,
d, J = 5.4
Hz, minor), 3.64 (1 H, d, J = 5.6
Hz, major), 3.41 (1 H, d, J = 6.2
Hz, major), 3.30 (1 H, d, J = 6.2
Hz, minor). MS (EI): m/z (%) = (1.1) 402 [M + 1]+.
Anal. Calcd for C25H23NO2S: C,
74.78; H, 5.77; N, 3.49. Found: C, 75.16; H, 5.74; N, 3.37.
Compound 3d (major): mp 97-98 ˚C
(Et2O-n-hexane); [α]D
²³ +22.0
(c 0.90, CHCl3).
Compound 3d (minor): mp 105-106 ˚C
(Et2O-n-hexane); [α]D
²³ +12.4
(c 2.03, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 7.62 (2 H,
d, J = 8.2
Hz, minor), 7.54 (2 H, d, J = 8.2
Hz, major), 3.56 (1 H, m, minor), 3.53 (1 H, m, major), 3.11 (1 H,
d, J = 4.3
Hz, major), 3.08 (1 H, d, J = 4.3
Hz, minor). HRMS-FAB: m/z calcd
for C12H14NO2S: 236.074526; found:
236.075172.
Compound 3f: oil. ¹H
NMR (400 MHz, CDCl3): δ = 7.60 (2 H,
d, J = 7.8
Hz, minor), 7.54 (2 H, d, J = 7.8
Hz, major), 3.23 (1 H, d, J = 4.4
Hz, minor), 3.21 (1 H, d, J = 4.4
Hz, major), 3.13 (1 H, d, J = 4.4
Hz, major), 3.10 (1 H, d, J = 4.4 Hz,
minor). MS (FI): m/z (%) =(100)
263 [M+]. Anal. Calcd for
C14H17NO2S: C, 63.85; H, 6.51;
N, 5.32. Found: C, 62.95; H, 6.81; N, 5.17.
Compound 3g: mp 92-93 ˚C
(Et2O-n-pentane). ¹H
NMR (400 MHz, CDCl3): δ = 7.61 (2 H,
d, J = 8.1
Hz, minor), 7.56 (2 H, d, J = 8.1
Hz, major), 3.13 (1 H, J = 7.7,
1.5 Hz, major), 3.06 (1 H, m, minor), 2.97 (1 H, dd, J = 7.7, 4.6
Hz, major), 2.80 (1 H, m, minor). MS (EI): m/z (%) =(18)
263 [M+]. Anal. Calcd for
C14H17NO2S: C, 63.85; H, 6.51;
N, 5.32. Found: C, 62.62; H, 6.72; N, 5.29.
Compound 3h: diasteriomeric mixture (1:1), mp 69-71 ˚C, 77-80 ˚C
(EtOAc). ¹H NMR (400 MHz, CDCl3): δ = 2.81
(1
H, d, J = 4.1
Hz), 2.79 (1 H, d, J = 7.3
Hz), 2.71 (1 H, d, J = 6.9
Hz), 2.24 (1 H, d, J = 3.7
Hz). HRMS (EI): m/z calcd for
C16H15NO2S: 285.08235; found: 285.083598.
Anal. Calcd for C16H15NO2S: C,
67.34; H, 5.30; N, 4.91. Found: C, 67.34; H, 5.30; N, 4.91.
Compounds 3i: 3Ai: mp 103-105 ˚C
(EtOAc); [α]D
²³ -15.1 (c 3.30, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.91 (1 H, dd, J = 6.5, 3.3
Hz), 2.89 (1 H, d, J = 3.3
Hz), 2.66 (1 H, d, J = 6.5
Hz). Anal. Calcd for C15H15NO3S2:
C, 56.05; H, 4.70; N, 4.36. Found: C, 55.87; H, 4.76; N, 4.38. 3Bi: mp 120-121 ˚C
(EtOAc); [α]D
²³ +7.4
(c 2.04, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 3.70 (1 H,
dd, J = 6.3,
3.2 Hz), 2.75 (1 H, d, J = 6.3
Hz), 2.43 (1 H, br d); the attribution to 3Ai and 3Bi may be reversed. HRMS (EI): m/z calcd for C15H15NO3S2: 321.04933;
found: 321.04958.
Oxidation of 3Aa/3Ba
To
a solution of 3Aa/3Ba (0.2
mmol) was added MCPBA (0.4 mmol), and after 18 h at r.t. the solvent
was removed and the enantiomeric mixture of 4Aa/4Ba isolated (yield 99%); ee 53% from ¹H
NMR (400 MHz, CDCl3): δ = 3.45 (1 H,
H2) split by addition of Eu(hfc)3.