Subscribe to RSS
DOI: 10.1055/s-0029-1218552
Easy Access to Configurationally Controlled C-Glycofuranoside-Based Building Blocks by Means of Formyl C-Glycofuranosides
Publication History
Publication Date:
09 December 2009 (online)

Abstract
A general approach to enantiopure C-glycofuranoside-based hybrid α/β-amino acids and nitrones, among other valuable building blocks, has been established via formyl C-glycofuranosides, easily available from hexose-derived equatorial-2-OH-glycopyranosides by DAST-promoted ring contraction.
Key words
C-glycofuranoside-based building blocks - formyl C-glycofuranosides - DAST-promoted ring contraction - C-glycofuranosyl nitrones - C-glycofuranosyl amino acids
-
1a
Taylor EA.Clinch K.Kelly PM.Li L.Evans GB.Tyler PC.Schramn VL. J. Am. Chem. Soc. 2007, 129: 6984 -
1b
Pellisier H. Tetrahedron 2005, 61: 2947 -
1c
Schmieg J.Yang G.Franck RW.Tsuji MO.
J. Exp. Med. 2003, 198: 1631 -
1d
Levy W.Chang D. The Chemistry of C-Glycosyl Compound Elsevier; Cambridge: 1995. -
2a
Kaliappan KP.Subrahmanyam AV. Org. Lett. 2007, 9: 1121 -
2b
Moreno B.Quehen C.Rose-Helene M.Leclerc E.Quirion J.-C. Org. Lett. 2007, 9: 2477 -
2c
Taillefumier C.Chapleur Y. Chem. Rev. 2004, 104: 263 -
3a
Vera-Ayoso Y.Borrachero P.Cabrera-Escribano F.Carmona AT.Gómez-Guillén M. Tetrahedron: Asymmetry 2005, 16: 889 -
3b
Vera-Ayoso Y.Borrachero P.Cabrera-Escribano F.Carmona AT.Gómez-Guillén M. Tetrahedron: Asymmetry 2004, 15: 429 -
3c
Borrachero P.Cabrera-Escribano F.Carmona AT.Gómez-Guillén M. Tetrahedron: Asymmetry 2000, 11: 2927 -
3d
Borrachero P.Cabrera-Escribano F.Gómez-Guillén M.Madrid-Díaz F. Tetrahedron Lett. 1997, 38: 1231 - 4 One of most important principles
of Green Chemistry is that of atom economy. Rearrangements are considered
as atom economic reactions:
Anastas Y.Warner JC. Green Chemistry: Theory and Practice Oxford University Press; New York: 1998. - 5
Kirchning A.Kujat C.Luiken S.Schaumann E. Eur. J. Org. Chem. 2007, 2387 - 6
Vera-Ayoso Y.Borrachero P.Cabrera-Escribano F.Gómez-Guillén M.Vogel P. Synlett 2006, 45 -
7a
Aye Y.Davies SG.Garner C.Roberts PM.Smith AD.Thomson JE. Org. Biomol. Chem. 2008, 6: 2195 -
7b
Benedek G.Palkó M.Wéber E.Martinek TA.Forró E.Fülöp F. Eur. J. Org. Chem. 2008, 3724 -
7c
Forró E.Fülöp F. Chem. Eur. J. 2007, 13: 6397 -
8a
Sharma GVM.Babu BS.Chatterjee D.Ramakrishna KVS.Kunwar AC.Schramm P.Hofmann H.-H. J. Org. Chem. 2009, 74: 6703 -
8b
Choi SH.Guzei IA.Spencer LC.Gellman SH. J. Am. Chem. Soc. 2008, 130: 6544 -
8c
Prabhakaran P.Kale SS.Puranik VG.Rajamohanan PR.Chetina O.Howard JAK.Hofmann H.-J.Sanjayan GJ. J. Am. Chem. Soc. 2008, 130: 17743 -
8d
Schmitt MA.Choi SH.Guzei IA.Gellman SH. J. Am. Chem. Soc. 2006, 128: 4538 -
9a
Seebach D.Gardiner J. Acc. Chem. Res. 2008, 41: 1366 -
9b
Sadowsky JD.Schmitt MA.Lee HS.Umezawa N.Wang S.Tomita Y.Gellman SH. J. Am. Chem. Soc. 2005, 127: 11966 - 10
Fülöp F.Martinek TA.Tóth GK. Chem. Soc. Rev. 2006, 35: 323 -
11a
Stanley LM.Sibi MP. Chem. Rev. 2008, 108: 2887 -
11b
Ratner DM.Adams EW.Disney MD.Seeberger PH. ChemBioChem 2004, 5: 1375 - 12
Baer HH.Gan Y. Carbohydr. Res. 1991, 210: 233 - The calculations were performed at the University of Barcelona. Lowest-energy conformer were calculated by performing Monte Carlo conformational searches (50000 steps) with MacroModel 8.5 (MM2*, CHCl3, GB/SA):
-
14a
Mohamadi F.Richards NGJ.Guida WC.Liskamp R.Lipton M.Caufied C.Chang G.Hendrickson T.Still WC. J. Comp. Chem. 1990, 11: 440 -
14b
Still WC.Tempczyk A.Hawley RC.Hendrickson T. J. Am. Chem. Soc. 1990, 112: 6127 - 15
Borrachero P.Cabrera F.Diánez MJ.Estrada MD.Gómez-Guillén M.López-Castro A.Moreno J.Paz J.Pérez-Garrido S. Tetrahedron: Asymmetry 1999, 10: 77 - 17
Torres-Sánchez MI.Borrachero P.Cabrera-Escribano F.Gómez-Guillén M.Angulo-Álvarez M.Sánchez E.Favre S.Vogel P. Tetrahedron 2007, 18: 1089
References and Notes
Preparation and
More Relevant Data of Compound 10
A soln of 9 (105 mg, 0.340 mmol) in dry THF (4.8
mL) containing 3 Å MS was treated with NaCNBH3 (273
mg, 4.35 mmol). The mixture was stirred for 15 min, and then Et2O-HCl
(3.5%, 6 mL) was added. After 5 min, the reaction was diluted
with H2O (20 mL) and CH2Cl2 (20
mL). After separation, the organic layer was successively washed
with sat. aq NaHCO3 (50 mL) and brine (50 mL), dried
(Na2SO4), and concentrated. Column chromatography
(hexane-EtOAc, 3:1) gave pure 10 (64
mg, 64%).
Analytical Data
[α]D
²4 +16.2
(c 0.63, CH2Cl2).
IR: νmax = 2108 (N3) cm-¹. ¹H NMR
(500 MHz, acetone-d
6): δ = 7.36-7.26
(m, 5 H, Ph), 4.75 (s br, 1 H, OHC4), 4.55 (s, 2 H, CH2Ph),
4.55-4.53 (m, 1 H, H-4), 4.17 (ddd, 1 H, J
1,2 = J
1
′
,2 = 5.7
Hz, J
2,3 = 3.7
Hz, H-2), 4.14 (dd, 1 H, J
3,4 = 4.2
Hz, H-3), 3.93 (ddd, 1 H, J
4,5 = 7.5
Hz, J
5,6
′ = 4.5
Hz, J
5,6 = 3.0
Hz, H-5), 3.65 (dd, 1 H, J
6,6
′ = 11.0
Hz, H-6), 3.58 (dd, 1 H, H-6′), 3.56 (dd, 1 H, J
1,1
′ = 10.0
Hz, H-1), 3.43 (dd, 1 H, H-1′), 3.31 (s, 3H, OCH3)
ppm. HRMS (CI): m/z calcd for
C14H19N3O4 + H: 294.1454;
found: 294.1462.
The ratio of 24/25 was calculated by the ¹H NMR (CDCl3) of the mixture, in particular from the signals of H-4 of both stereoisomers: δ = 5.65 ppm (dd, 1 H, J 4,5 = 7.8 Hz, J 3,4 = 4.5 Hz, H-4) observed for the major stereoisomer 24, and that observed at δ = 4.80 ppm (dd, 1 H, J 4,5 = 7.2 Hz, J 3,4 = 4.8 Hz, H-4) for 25.
18
More Relevant
Data
Compound 16: [α]D
²¹ +37
(c 0.77, acetone). ¹H
NMR (500 MHz, acetone-d
6): δ = 7.36-7.33
(m, 5 H, Ph), 7.09 (d, 1 H, J
NH,3 = 7.0
Hz, CCONH), 6.43 (s br, 1 H, OCONH), 4.58-4.53 (m, 1 H,
H-3), 4.57 and 4.58 (each 2 d, 1 H, J
H,H
′ = 12.9 Hz,
CH2Ph), 4.45 (d, 1 H, J
OH,4 = 8.0
Hz, OHC4), 4.31 (ddd, 1 H, J
2,3 = 8.0
Hz, J
1
′
,2 = 4.5
Hz, J
1,2 = 3.0
Hz, H-2), 4.17-4.14 (m, 1 H, H-4), 4.01 (ddd, 1 H, J
5,6 = J
5,6
′ = 4.0
Hz, J
4,5 = 3.0
Hz, H-5), 3.77 (dd, 1 H, J
gem = 16.5
Hz, J
NH,CH2a = 6.0
Hz, NHCH
a
2), 3.72
(dd, 1 H, J
NH,CH2b = 6.0
Hz, NHCH
b
2), 3.55
(dd, 1 H, J
6,6
′ = 10.5
Hz, H-6), 3.52 (dd, 1 H, H-6′), 3.50 (dd, 1 H, J
1,1
′ = 10.5
Hz, H-1), 3.40 (dd, 1 H, H-1′), 3.35 (s, 3 H, OCH3),
1.43 [s, 9 H, C(CH3)3] ppm. ¹³C NMR
(125.7 MHz, acetone-d
6): δ = 170.5,
157.0, 139.6-128.2, 85.2, 79.6, 78.9, 73.8, 73.1, 72.9, 72.0, 59.3,
53.9, 44.9, 28.6 ppm. HRMS (CI): m/z calcd
for C21H32N2O7 + H: 425.2288;
found: 425.2291. Anal. Calcd for C21H32N2O7:
C, 59.42; H, 7.60; N, 6.60. Found: C, 59.12; H, 7.45; N, 6.72.
Compound 20: [α]D
²4 +52
(c 0.66, CH2Cl2).
IR: νmax = 2114 (N3) cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.07 (dd,
1 H, J
NH,CH2a = 5.0
Hz, NH), 5.22 (dd, 1 H, J
4,5 = 8.5
Hz, J
3,4 = 4.5 Hz,
H-4), 4.68 (dd, 1 H, J
2,3 = 4.5
Hz, H-3), 4.62 (d, 1 H, H-2), 4.40-4.36 (m, 1 H, H-5),
4.36 (dd, 1 H, J
6,6
′ = 12.5
Hz, J
5,6 = 2.5
Hz, H-6), 4.23 (q, 2 H, J = 7.0,
C2H5), 4.13 (dd, 1 H, J
5,6
′ = 4.0
Hz, H-6′), 4.11 (dd, 1 H, J
gem = 18.0
Hz, NHCH
a
2), 4.07
(dd, 1 H, NHCH
b
2),
2.16, 2.09 (2 s, each 3 H, COCH3), 1.29 (t, 3 H, C2H5)
ppm. HRMS (CI): m/z calcd for C14H20N4O8 + H:
373.1359; found: 373.1349.
Compound 22: [α]D
²4 -1.2
(c 0.75, CH2Cl2).
IR: νmax = 2112 (N3) cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 7.41 (s,
5 H, Ph), 6.79 (d, 1 H, J
1,2 = 4.5
Hz, H-1), 5.20 (dd, 1 H, J
4,5 = 8.0
Hz, J
3,4 = 5.0
Hz, H-4), 5.15 (dd, 1 H, J
2,3 = 4.5
Hz, H-2), 4.94 (dd, 1 H, H-3), 4.91 (s, 2 H, CH2Ph),
4.34 (dd, 1 H, J
6,6
′ = 12.0, J
5,6 = 3.0
Hz, H-6), 4.24 (ddd, J
5,6
′ = 4.5
Hz, H-5), 4.04 (dd, 1 H, H-6′), 2.14, 2.08 (2 s, each 3
H, 2 COCH3) ppm. ¹³C NMR
(125.7 MHz, CDCl3): δ = 170.7, 170.2, 136.2,
132.0-129.2, 77.2, 77.0, 73.5, 69.3, 63.3, 62.7, 20.9, 20.4 ppm.
HRMS (CI): m/z calcd for C17H20N4O6 + H: 377.1461;
found: 377.1454.