Subscribe to RSS
DOI: 10.1055/s-0029-1218580
α-Arylation and Alkynylation of Cyclic α-Iodoenones Using Palladium-Catalyzed Cross-Coupling Reactions with Trifluoroborate Salts
Publication History
Publication Date:
22 December 2009 (online)
Abstract
An expeditious synthesis of α-aryl- and α-alkynylcyclohexenones is described and illustrated by palladium-catalyzed cross-coupling reaction of cyclic α-iodoenones with potassium aryltrifluoroborate salts. This procedure offers easy access to α-arylated and alkynylated cyclohexenones functionalized with electron-donor and -acceptor substituents in good yields.
Key words
cross-coupling reaction - cyclic α-iodoenones - α-substituted enones
-
1a
Pal M.Parasuraman K.Subramanian V.Dakarapu R.Yeleswarapu KR. Tetrahedron Lett. 2004, 45: 2305 -
1b
Díaz-Sánchez BR.Iglesias-Arteaga MA.Melgar-Fernández R.Juaristi E. J. Org. Chem. 2007, 72: 4822 -
1c
Zhang J.Schmalz H.-G. Angew. Chem. Int. Ed. 2006, 45: 6704 -
1d
Xiao Y.Zhang J. Angew. Chem. Int. Ed. 2008, 47: 1903 -
2a
Liu Y.Zhou S. Org. Lett. 2005, 7: 4609 -
2b
Patil NT.Wu H.Yamamoto Y. J. Org. Chem. 2005, 70: 4531 -
2c
Yao T.Zhang X.Larock RC. J. Org. Chem. 2005, 70: 7679 -
2d
Oh CH.Reddy VR.Kim A.Rhim CY. Tetrahedron Lett. 2006, 45: 5307 -
2e
Miller MW.Johnson CR. J. Org. Chem. 1997, 62: 1582 -
2f
Yao T.Zhang X.Larock RC. J. Am. Chem. Soc. 2004, 126: 11164 -
3a
Kabat MM.Kiegiel J.Cohen N.Toth K.Wovkulich PM.Uskokovic MR. J. Org. Chem. 1996, 61: 118 -
3b
Zhao Y.Zhou Y.Liang L.Yang X.Du F.Li L.Zhang H. Org. Lett. 2009, 11: 555 -
4a
Nagata T.Ando Y.Hirota A. Biosci. Biotechnol. Biochem. 1992, 56: 810 -
4b
Graham AE.Mckerrecher D.Davies DH.Taylor RJ. Tetrahedron Lett. 1996, 37: 7445 - 5
Garlashelli L.Magistrali F.Vidari G.Zuffardi O. Tetrahedron Lett. 1995, 36: 5633 - 6
Negishi E.Tan Z.Liou S.-Y.Liao B. Tetrahedron 2000, 56: 10197 ; and references cited therein -
7a
Rezgui R.Amri H.El Gaïed MMM. Tetrahedron 2003, 59: 1369 -
7b
Yokota T.Sakakura A.Tani M.Sakaguchi S.Ishii Y. Tetrahedron Lett. 2002, 43: 8887 -
7c
Mills SG.MacCoss M.Underwood D.Shah SK.Finke PE.Miller DJ.Budhu RJ.Cascieri MA.Sadowski S.Strader CD. Bioorg. Med. Chem. Lett. 1995, 5: 1345 -
7d
Chidambaram N.Chandrasekaran S. J. Org. Chem. 1987, 52: 5048 -
8a
Johnson CR.Adams JP.Braun MP.Senanayake CBW. Tetrahedron Lett. 1992, 33: 919 -
8b
Handy ST.Zhang X. Org. Lett. 2001, 3: 233 -
8c
Ruel FS.Braun MP.Johnson CR. Org. Synth., Coll. Vol. 10 2004, 467 -
9a
Pal M.Parasuraman K.Subramanian V.Dakarapu R.Yeleswarapu R. Tetrahedron Lett. 2004, 45: 2305 -
9b
Graham AE.McKerrecher D.Davies DH.Taylor RJK. Tetrahedron Lett. 1996, 37: 7445 - 10
Koech PK.Krische MJ. J. Am. Chem. Soc. 2004, 126: 5350 -
11a
Suzuki A.Brown HC. Organic Synthesis Via Boranes Vol. 3: Aldrich Chemical Company, Inc.; Milwaukee: 2003. -
11b
Lau KCY.He HS.Chiu P.Toy PH. J. Comb. Chem. 2004, 6: 955 -
11c
Felpin F.-X. J. Org. Chem. 2005, 70: 8575 -
11d
Banks J.Mele DV.Frost CG. Tetrahedron Lett. 2006, 47: 2863 -
11e
Burns MJ.Fairlamb JS.Kapdi AR.Sehnal P.Taylor RJK. Org. Lett. 2007, 9: 5397 -
11f
Inés B.Moreno I.SanMartin R.Domínguez E. J. Org. Chem. 2008, 73: 8448 -
11g
Dawood KM. Tetrahedron 2007, 63: 9642 - For reviews of organotrifluoroborate salts, see:
-
12a
Molander GA.Figueroa R. Aldrichimica Acta 2005, 38: 49 -
12b
Molander GA.Ellis N. Acc. Chem. Res. 2007, 40: 275 -
12c
Stefani HA.Cella R.Vieira AS. Tetrahedron 2007, 63: 3623 -
12d
Darses S.Genêt J.-P. Chem. Rev. 2008, 108: 288 -
13a
Singh FV.Milagre HMS.Eberlin MN.Stefani HA. Tetrahedron Lett. 2009, 50: 2312 -
13b
Vieira AS.Ferreira FP.Fiorante PF.Guadagnin RC.Stefani H A. Tetrahedron 2008, 64: 3306 -
13c
Vieira AS.Fiorante PF.Hough TLS.Ferreira FP.Lüdtke DS.Stefani HA. Org. Lett. 2008, 10: 5215 -
13d
Vieira AS.Fiorante PF.Zukerman-Schpector J.Alves D.Botteselle GV.Stefani HA. Tetrahedron 2008, 64: 7234 -
13e
Guadagnin RC.Suganuma CA.Singh FV.Vieira AS.Cella R.Stefani HA. Tetrahedron Lett. 2008, 49: 4713 -
13f
Botteselle GV.Hough TLS.Venturoso RC.Cella R.Vieira AS.Stefani HA. Aust. J. Chem. 2008, 61: 870 -
13g
Cella R.Orfão ATG.Stefani HA. Tetrahedron Lett. 2006, 47: 5075 -
13h
Vieira AS.Ferreira FP.Guarezemini AS.Stefani HA. Aust. J. Chem. 2009, 62: 909 -
13i
Cella R.Cunha RLOR.Reis AES.Pimenta DC.Klitzke CF.Stefani HA. J. Org. Chem. 2006, 71: 244 -
13j
Weber M.Singh FV.Vieira AS.Stefani HA.Paixão MW. Tetrahedron Lett. 2009, 50: 4324 -
13k
Singh FV.Weber M.Guadagnin RC.Stefani HA. Synlett 2008, 1889 - 15
Ting R.Harwig CW.Lo J.Li Y.Adam MJ.Ruth TJ.Perrin DM. J. Org. Chem. 2008, 73: 4662
References and Notes
General Procedure
for the Cross-Coupling Reaction of Aryltrifluoroborate Salts with
2-Iodocyclohex-2-enone (Table 3, Entry 1)
To a round-bottomed
flask containing phenyltrifluoroborate salt (0.5 mmol), 2-iodocyclohex-2-enone
(0.5 mmol), K2CO3 (1.5 mmol), and PdCl2 (5
mol%) was added a mixture of 1,4-dioxane (4 mL) and degassed
H2O (1.0 mL). The reaction mixture was allowed to stir
at 80 ˚C for 5 h. After this time, the mixture
was cooled to r.t., diluted with EtOAc (10 mL), and washed with
sat. aq NH4Cl (3 × 10 mL).
The organic phase was separated, dried over MgSO4, and concentrated
under vacuum. The residue was purified by flash chromatography on
silica gel using hexane-EtOAc (8:2) as the eluent.
Selected Spectral and Analytical Data for 2-Phenylcyclo-hex-2-enone
(4a)
Yield 80%. ¹H NMR
(300 MHz, CDCl3): δ = 7.28-7.40
(m, 5 H), 7.06 (t, 1 H, J = 4.1
Hz), 2.53-2.64 (m, 4 H), 2.09-2.17 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 197.9, 147.9, 140.3,
136.5, 128.5, 127.9, 127.5, 39.0, 26.5, 22.9. LRMS: m/z (%) = 172
(100) [M+], 144 (64), 130
(26), 115 (82), 103 (16), 71 (12), 63 (14), 51 (15). IR (KBr): ν = 1662,
2933, 3016 cm-¹. Mp 93-94 ˚C
(lit.¹³ 92-93 ˚C).
General Procedure
for the Cross-Coupling Reaction of Alkynyltrifluoroborate Salts
with 2-Iodocyclohex-2-enone (Table 4, Entry 1)
To
a round-bottomed flask containing phenylethynyltri-fluoroborate
salt (0.5 mmol), 2-iodocyclohex-2-enone
(0.5 mmol), K2CO3 (1.5
mmol), and PdCl2 (5 mol%) was added a mixture
of 1,4-dioxane (4 mL) and degassed H2O (1.0 mL). The
reaction mixture was allowed to stir at 80 ˚C for
7 h. After this time, the mixture was cooled to r.t, diluted with
EtOAc (10 mL), and washed with sat. aq NH4Cl (3 × 10 mL).
The organic phase was separated, dried over MgSO4, and
concentrated under vacuum. The residue was purified by flash chromatography
on silica gel using hexane-EtOAc (8:2) as the eluent.
Selected Spectral and Analytical Data for 2-(Phenyl-ethynyl)cyclohex-2-enone
(6a)
Yield 73%. ¹H NMR
(300 MHz, CDCl3): δ = 7.61-7.64
(m, 2 H), 7.24-7.38 (m, 3 H), 6.47 (t, J = 1.89
Hz, 1 H), 2.48-2.57 (m, 2 H), 2.34-2.44 (m, 2
H), 1.89-1.98 (m, 2 H). ¹³C NMR
(75 MHz, CDCl3): δ = 171.5, 153.3,
150.7, 131.4, 128.6 (2 C), 127.2, 123.7 (2 C), 122.4, 105.6, 62.4,
32.5, 23.0, 21.0. LRMS: m/z (%) = 196
(100) [M+], 167 (44), 152 (17),
118 (19), 95 (22), 83 (27), 77 (16).
General Procedure
for the Cross-Coupling Reaction of Phenyltrifluoroborate Salt with
2-Iodoen-2-ones (Table 5, Entry 1)
To a round-bottomed
flask containing phenyltrifluoroborate salt (0.5 mmol), (S)-1-benzoyl-5-iodo-2-isopropyl-2,3-dihydropyrimidin-4
(1H)-one (0.5 mmol), K2CO3 (1.5 mmol),
and PdCl2 (5 mol%) was added a mixture of 1,4-dioxane
(4 mL) and degassed H2O (1.0 mL). The reaction mixture
was allowed to stir at 80 ˚C for 2 h. After this
time, the mixture was cooled to r.t., diluted with EtOAc (10 mL), and
washed with sat. aq NH4Cl (3 × 10
mL). The organic phase was separated, dried over MgSO4,
and concentrated under vacuum. The residue was purified by flash chromatography
on silica gel using hexane-EtOAc (8:2) as the eluent.
Selected Spectral and Analytical Data for (
S
)-1-Benzoyl-2-isopropyl-5-phenyl-2,3-dihydropyrimidin-4
(1
H
)-one (8a)
Yield
65%. ¹H NMR (300 MHz, CDCl3): δ = 7.48-7.59
(m, 6 H), 7.42 (dd, J = 7.5,
1.3 Hz, 2 H), 7.27-7.34 (m, 3 H), 6.66 (d, J = 4.4 Hz,
1 H), 5.67 (s, 1 H), 2.36-2.43 (m, 1 H), 1.09 (d, J = 6.7 Hz,
3 H), 1.01 (d, J = 6.9
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 168.4,
163.4, 134.3, 133.4, 132.9, 131.4, 128.6 (2 C), 128.2 (2 C), 128.1
(2 C), 128.0, 127.5 (2 C), 116.6, 68.9, 32.8, 18.2, 17.4. LRMS: m/z (%) = 320
(1) [M+], 277 (14), 105 (100),
89 (2), 77 (28), 51 (4), 43 (2). IR: ν = 3396,
3053, 2992, 2859, 1652, 1607 cm-¹.
Mp 173.2-174.8 ˚C.