Subscribe to RSS
DOI: 10.1055/s-0029-1218709
Oxidation and Deprotection of Primary Benzylamines by Visible Light Flavin Photocatalysis
Publication History
Publication Date:
26 March 2010 (online)

Abstract
We report a photocatalytic oxidation procedure that can be used to convert benzylamines into their corresponding aldehydes under mild conditions without over-oxidation, using riboflavin tetraacetate as photocatalyst and blue emitting LEDs (440 nm) as light source. Oxygen is the terminal oxidant and H2O2 and NH3 appear as the only byproducts of the oxidation of primary benzylamines. Furthermore, we have developed a photocatalytic protocol for 4-methoxybenzyl (Mob) group deprotection of primary amines and alcohols. Double bonds, benzyl-protected esters and alcohols are tolerated under the applied conditions, whereas the deprotection of protected secondary amines is not applicable. Mob-protected carboxylic acids and carboxybenzoyl (Cbz) protected amines are inert under the photodeprotection conditions.
Key words
flavin - photooxidation - redox chemistry - electron transfer - benzyl protecting group
-
1a
Massey V. Biochem. Soc. Trans. 2000, 28: 283 -
1b
Gishla S.Massey V. Eur. J. Biochem. 1989, 181: 1 -
1c
Hemmerich P. Chem. Org. Nat. Prod. 1976, 33: 451 -
2a
Jordan BJ.Cooke C.Garety JF.Pollier MA.Kryvokhyzha N.Bayir A.Rabani G.Rotello VM. Chem. Commun. 2007, 1248 -
2b
Carroll JB.Jordan BJ.Xu H.Erdogan B.Lee L.Cheng L.Tiernan C.Cooke G.Rotello VM. Org. Lett. 2005, 7: 2551 -
2c
Gray M.Goodmann AJ.Carroll JB.Bardon K.Markey M.Cooke G.Rotello VM. Org. Lett. 2004, 6: 385 -
2d
Butterfield SM.Goodman CM.Rotello VM.Waters ML. Angew. Chem. Int. Ed. 2004, 43: 724 -
2e
Guo F.Chang BH.Rizzo CJ. Bioorg. Med. Chem. Lett. 2002, 12: 151 -
2f
Behrens C.Ober M.Carell T. Eur. J. Org. Chem. 2002, 3281 -
2g
Butenandt J.Epple R.Wallenborn E.-U.Eker APM.Gramlich V.Carell T. Chem. Eur. J. 2000, 6: 62 -
2h
Rotello VM. Curr. Opin. Chem. Biol. 1999, 3: 747 -
2i
Deans R.Rotello VM.
J. Org. Chem. 1997, 62: 4528 -
2j
Breinlinger E.Niemz A.Rotello VM. J. Am. Chem. Soc. 1995, 117: 5379 -
3a
Piera J.Bäckvall J.-E. Angew. Chem. Int. Ed. 2008, 47: 3506 ; Angew. Chem. 2008, 120, 3558 -
3b
Baxová LB.Cibulka R.Hampl F. J. Mol. Catal. A: Chem. 2007, 277: 53 -
3c
Lindén AA.Johansson M.Hermanns N.Bäckvall J.-E. J. Org. Chem. 2006, 71: 3849 -
3d
Imada Y.Iida H.Ono S.Masui Y.Murahashi S.-I. Chem. Asian J. 2006, 1-2: 136 -
3e
Lindén AA.Hermanns N.Ott S.Krüger L.Bäckvall J.-E. Chem. Eur. J. 2005, 11: 112 -
3f
Imada Y.Iida H.Murahashi S.-I.Naota T. Angew. Chem. Int. Ed. 2005, 44: 1704 ; Angew. Chem. 2005, 117, 1732 -
3g
Imada Y.Iida H.Ono S.Murahashi S.-I. J. Am. Chem. Soc. 2003, 125: 2868 -
3h
Murahashi S.-I.Ono S.Imada Y. Angew. Chem. Int. Ed. 2002, 41: 2366 ; Angew. Chem. 2002, 114, 2472 -
3i
Bergstad K.Bäckvall J.-E. J. Org. Chem. 1998, 63: 6650 -
3j
Mazzini C.Lebreton J.Furstoss R. J. Org. Chem. 1996, 61: 8 -
3k
Murahashi S.-I.Oda T.Masui Y. J. Am. Chem. Soc. 1989, 111: 5002 -
3l
Shinkai S.Ishikawa Y.-I.Manabe O. Chem. Lett. 1982, 11: 809 -
3m
Ball S.Bruice TC. J. Am. Chem. Soc. 1980, 102: 6498 -
4a
Schmaderer H.Hilgers P.Lechner R.König B. Adv. Synth. Catal. 2009, 351: 163 -
4b
Svoboda J.Schmaderer H.König B. Chem. Eur. J. 2008, 14: 1854 -
4c
Massad WA.Barbieri Y.Romero M.Garcia NA. Photochem. Photobiol. 2008, 84: 1201 -
4d
Cibulka R.Vasold R.König B. Chem. Eur. J. 2004, 10: 6223 -
4e
Lu O.Bucher G.Sander W. ChemPhysChem 2004, 5: 47 -
4f
Martin CB.Tsao M.-L.Hadad CM.Platz MS. J. Am. Chem. Soc. 2002, 124: 7226 -
4g
Fukuzumi S.Yasui K.Suenobu T.Ohkubo K.Fujitsuka M.Ito O. J. Phys. Chem. A 2001, 105: 10501 -
4h
Silva E.Edwards AM.Pacheco D. J. Nutr. Biochem. 1999, 10: 181 -
4i
García J.Silva E. J. Nutr. Biochem. 1997, 8: 341 -
4j
Tatsumi K.Ichikawa H.Wada S. J. Contam. Hydrol. 1992, 9: 207 -
4k
Fukuzumi S.Tanii K.Tanaka T. J. Chem. Soc., Chem. Commun. 1989, 816 -
5a
Mansoorabadi SO.Thibodeaux CJ.Liu H. J. Org. Chem. 2007, 72: 6329 -
5b
Chemistry
and Biochemistry of Flavoenzymes
Müller F. CRC; Boca Raton: 1991. -
5c
Fritz BJ.Kasai S.Matsui K. Photochem. Photobiol. 1987, 45: 113 -
5d
Bowd A.Byrom P.Hudson JB.Turnbull JH. Photochem. Photobiol. 1968, 8: 1 -
5e
König B.Pelka M.Zieg H.Ritter T.Bouas-Laurent H.Bonneau R.Desvergne J.-P. J. Am. Chem. Soc. 1999, 121: 1681 -
5f
Kercher M.König B.Zieg H.De Cola L. J. Am. Chem. Soc. 2002, 124: 11541 -
6a
Haines AH. Methods for the oxidation of organic compounds Academic Press; London: 1988. -
6b
Rawalay SS.Schechter H. J. Org. Chem. 1967, 32: 3129 -
6c
Audette RJ.Quail JW.Smith PJ. Tetrahedron Lett. 1971, 3: 279 -
6d
Stephens FF.Bower JD. J. Chem. Soc. 1949, 2971 -
7a
Srogl RJ.Voltrova S. Org. Lett. 2009, 11: 843 -
7b
Suzuki K.Watanabe T.Murahashi S.-I. Angew. Chem. Int. Ed. 2008, 47: 2079 -
7c
Samec JSM.Ell AH.Bäckvall J.-E. Chem. Eur. J. 2005, 11: 2327 -
7d
Bailey AJ.James BR. Chem. Commun. 1996, 2343 -
7e
Murahashi S.-I. Angew. Chem. Int. Ed. Engl. 1995, 34: 2443 ; Angew. Chem. 1995, 107, 2670 -
7f
Neumann R.Levin M. J. Org. Chem. 1991, 56: 5707 -
8a
Jiang G.Chen J.Huang J.-S.Che C.-M. Org. Lett. 2009, 11: 4568 -
8b
Iesce MR.Cermola F.Rubino M. Curr. Org. Chem. 2007, 11: 1053 -
8c
Matsumoto M.Kitano Y.Kobayashi H.Ikawa H. Tetrahedron Lett. 1996, 37: 8191 -
8d
Ohkubo K.Nanjo T.Fukuzumi S. Bull. Chem. Soc. Jpn. 2006, 79: 1489 -
8e
Nicolas C.Herse C.Lacour J. Tetrahedron Lett. 2005, 46: 4605 -
8f
Baciocchi E.Del Giacco T.Lapi A. Org. Lett. 2004, 6: 4791 -
8g
Naya S.-I.Iida Y.Nitta M. Tetrahedron 2004, 60: 459 -
9a
Fitzpatrick PF. Arch. Biochem. Biophys. 2010, 1: 13 -
9b
Rigby SE.Basran J.Combe JP.Mohsen AW.Toogood H.van Thiel A.Sutcliffe MJ.Leys D.Munro AW.Scrutton NS. Biochem. Soc. Trans. 2005, 33: 754 -
9c
Hoegy SE.Mariano PS. Tetrahedron 1997, 53: 5027 -
9d
Kim JM.Bogdan MA.Mariano PS.
J. Am. Chem. Soc. 1993, 115: 10591 -
9e
Kim J.-M.Cho I.-S.Mariano PS. J. Org. Chem. 1991, 56: 4943 -
9f
Kim JM.Bogdan MA.Mariano PS. J. Am. Chem. Soc. 1991, 113: 9251 -
9g
Simpson JT.Krantz A.Lewis FD.Kokel B. J. Am. Chem. Soc. 1982, 104: 7155 - 10
McCormick DB. J. Heterocycl. Chem. 1970, 7: 447 -
11a
Baiocco P.Barreca AM.Fabbrini M.Galli C.Gentili P. Org. Biomol. Chem. 2003, 1: 191 -
11b
Fabbrini M.Galli C.Gentili P. J. Mol. Catal. B: Enzymol. 2002, 18: 169 -
11c
Baciocchi E.Belvedere S.Bietti M.Lanzalunga O. Eur. J. Org. Chem. 1998, 299 -
11d
Bietti M.Baciocchi E.Steenken S. J. Phys. Chem. A 1998, 102: 7337 - 12
Green TW.Wuts PGM. Greene’s Protective Groups in Organic Synthesis 4th ed.: Wiley-Interscience; New York: 2006. - 15
Orito K.Horibata A.Nakamura T.Ushito H.Nagasaki H.Yuguchi M.Yamashita S.Tokuda M. J. Am. Chem. Soc. 2004, 126: 14342 - 16
Ding HX.Lu W.Zhou CX.Li HB.Yang LX.Zhang QJ.Wu XM.Baudoin O.Cai JC.Gueritte F.Zhao Y. Chin. Chem. Lett. 2005, 16: 1279 - 17
Gil C.Braese S. Chem. Eur. J. 2005, 11: 2680 - 18
Lee O.-L.Law K.-L.Ho C.-Y.Yang D. J. Org. Chem. 2008, 73: 8829 - 19
Sibi MP.Zhang R.Manyem S. J. Am. Chem. Soc. 2003, 125: 9306 - 20
Zeggaf C.Ponce J.Journ P.Dufour M.-N.Castro B. Tetrahedron 1989, 45: 5039 - 21
Dhaon MK.Olsen RK.Ramasamy K. J. Org. Chem. 1982, 47: 1962 - 22
Konda Y.Takahashi Y.Arima S.Sato N.Takeda K.Dobashi K.Baba M.Harigaya Y. Tetrahedron 2001, 57: 4311 - 23
Tamaki M.Han G.Hruby VJ. J. Org. Chem. 2001, 66: 38 - 24
Newsoroff GP.Stemhell S. Aust. J. Chem. 1968, 21: 747 - 25
Tehrani KA.Van TN.Karikomi M.Rottiers M.De Kimpe N. Tetrahedron 2002, 58: 7145 - 26
Apodaca R.Xiao W. Org. Lett. 2001, 3: 1745 - 27
Sharma GVM.Reddy CG.Krishna PR. J. Org. Chem. 2003, 68: 4574 - 28
Penn JH.Lin Z. J. Org. Chem. 1990, 55: 1554
References
It was shown in individual experiments that the photostability of RFT was enhanced under acidic conditions. The increased stability of RFT may result from protonation of the substrate, protonation of deprotected products or protonation of RFT in the excited state.
14The distance between the reaction flask and the LED array was about 1 cm. The reaction mixture was heated by the intense irradiation to about 40 ˚C.