Abstract
We report a photocatalytic oxidation procedure that can be used
to convert benzylamines into their corresponding aldehydes under
mild conditions without over-oxidation, using riboflavin tetraacetate
as photocatalyst and blue emitting LEDs (440 nm) as light source.
Oxygen is the terminal oxidant and H2 O2 and
NH3 appear as the only byproducts of the oxidation of
primary benzylamines. Furthermore, we have developed a photocatalytic
protocol for 4-methoxybenzyl (Mob) group deprotection of primary
amines and alcohols. Double bonds, benzyl-protected esters and alcohols
are tolerated under the applied conditions, whereas the deprotection
of protected secondary amines is not applicable. Mob-protected carboxylic
acids and carboxybenzoyl (Cbz) protected amines are inert under
the photodeprotection conditions.
Key words
flavin - photooxidation - redox chemistry - electron transfer - benzyl protecting group
References
1a
Massey V.
Biochem. Soc. Trans.
2000,
28:
283
1b
Gishla S.
Massey V.
Eur. J. Biochem.
1989,
181:
1
1c
Hemmerich P.
Chem.
Org. Nat. Prod.
1976,
33:
451
2a
Jordan BJ.
Cooke C.
Garety JF.
Pollier MA.
Kryvokhyzha N.
Bayir A.
Rabani G.
Rotello VM.
Chem. Commun.
2007,
1248
2b
Carroll JB.
Jordan BJ.
Xu H.
Erdogan B.
Lee L.
Cheng L.
Tiernan C.
Cooke G.
Rotello VM.
Org.
Lett.
2005,
7:
2551
2c
Gray M.
Goodmann AJ.
Carroll JB.
Bardon K.
Markey M.
Cooke G.
Rotello VM.
Org. Lett.
2004,
6:
385
2d
Butterfield SM.
Goodman CM.
Rotello VM.
Waters ML.
Angew.
Chem. Int. Ed.
2004,
43:
724
2e
Guo F.
Chang BH.
Rizzo CJ.
Bioorg.
Med. Chem. Lett.
2002,
12:
151
2f
Behrens C.
Ober M.
Carell T.
Eur.
J. Org. Chem.
2002,
3281
2g
Butenandt J.
Epple R.
Wallenborn E.-U.
Eker APM.
Gramlich V.
Carell T.
Chem. Eur.
J.
2000,
6:
62
2h
Rotello VM.
Curr. Opin. Chem. Biol.
1999,
3:
747
2i
Deans R.
Rotello VM.
J. Org.
Chem.
1997,
62:
4528
2j
Breinlinger E.
Niemz A.
Rotello VM.
J.
Am. Chem. Soc.
1995,
117:
5379
3a
Piera J.
Bäckvall J.-E.
Angew.
Chem. Int. Ed.
2008,
47:
3506 ; Angew. Chem. 2008 , 120 , 3558
3b
Baxová LB.
Cibulka R.
Hampl F.
J. Mol. Catal. A: Chem.
2007,
277:
53
3c
Lindén AA.
Johansson M.
Hermanns N.
Bäckvall J.-E.
J.
Org. Chem.
2006,
71:
3849
3d
Imada Y.
Iida H.
Ono S.
Masui Y.
Murahashi S.-I.
Chem. Asian
J.
2006,
1-2:
136
3e
Lindén AA.
Hermanns N.
Ott S.
Krüger L.
Bäckvall J.-E.
Chem. Eur. J.
2005,
11:
112
3f
Imada Y.
Iida H.
Murahashi S.-I.
Naota T.
Angew. Chem. Int. Ed.
2005,
44:
1704 ; Angew. Chem. 2005 , 117 , 1732
3g
Imada Y.
Iida H.
Ono S.
Murahashi S.-I.
J. Am. Chem. Soc.
2003,
125:
2868
3h
Murahashi S.-I.
Ono S.
Imada Y.
Angew.
Chem. Int. Ed.
2002,
41:
2366 ; Angew. Chem. 2002 , 114 , 2472
3i
Bergstad K.
Bäckvall J.-E.
J. Org. Chem.
1998,
63:
6650
3j
Mazzini C.
Lebreton J.
Furstoss R.
J.
Org. Chem.
1996,
61:
8
3k
Murahashi S.-I.
Oda T.
Masui Y.
J.
Am. Chem. Soc.
1989,
111:
5002
3l
Shinkai S.
Ishikawa Y.-I.
Manabe O.
Chem.
Lett.
1982,
11:
809
3m
Ball S.
Bruice TC.
J. Am. Chem. Soc.
1980,
102:
6498
4a
Schmaderer H.
Hilgers P.
Lechner R.
König B.
Adv. Synth.
Catal.
2009,
351:
163
4b
Svoboda J.
Schmaderer H.
König B.
Chem.
Eur. J.
2008,
14:
1854
4c
Massad WA.
Barbieri Y.
Romero M.
Garcia NA.
Photochem. Photobiol.
2008,
84:
1201
4d
Cibulka R.
Vasold R.
König B.
Chem.
Eur. J.
2004,
10:
6223
4e
Lu O.
Bucher G.
Sander W.
ChemPhysChem
2004,
5:
47
4f
Martin CB.
Tsao M.-L.
Hadad CM.
Platz MS.
J.
Am. Chem. Soc.
2002,
124:
7226
4g
Fukuzumi S.
Yasui K.
Suenobu T.
Ohkubo K.
Fujitsuka M.
Ito O.
J. Phys. Chem. A
2001,
105:
10501
4h
Silva E.
Edwards AM.
Pacheco D.
J.
Nutr. Biochem.
1999,
10:
181
4i
García J.
Silva E.
J. Nutr. Biochem.
1997,
8:
341
4j
Tatsumi K.
Ichikawa H.
Wada S.
J.
Contam. Hydrol.
1992,
9:
207
4k
Fukuzumi S.
Tanii K.
Tanaka T.
J.
Chem. Soc., Chem. Commun.
1989,
816
5a
Mansoorabadi SO.
Thibodeaux CJ.
Liu H.
J.
Org. Chem.
2007,
72:
6329
5b
Chemistry
and Biochemistry of Flavoenzymes
Müller F.
CRC;
Boca Raton:
1991.
5c
Fritz BJ.
Kasai S.
Matsui K.
Photochem.
Photobiol.
1987,
45:
113
5d
Bowd A.
Byrom P.
Hudson JB.
Turnbull JH.
Photochem. Photobiol.
1968,
8:
1
5e
König B.
Pelka M.
Zieg H.
Ritter T.
Bouas-Laurent H.
Bonneau R.
Desvergne J.-P.
J.
Am. Chem. Soc.
1999,
121:
1681
5f
Kercher M.
König B.
Zieg H.
De Cola L.
J. Am. Chem. Soc.
2002,
124:
11541
6a
Haines AH.
Methods
for the oxidation of organic compounds
Academic
Press;
London:
1988.
6b
Rawalay SS.
Schechter H.
J. Org.
Chem.
1967,
32:
3129
6c
Audette RJ.
Quail JW.
Smith PJ.
Tetrahedron Lett.
1971,
3:
279
6d
Stephens FF.
Bower JD.
J.
Chem. Soc.
1949,
2971
7a
Srogl RJ.
Voltrova S.
Org.
Lett.
2009,
11:
843
7b
Suzuki K.
Watanabe T.
Murahashi S.-I.
Angew. Chem.
Int. Ed.
2008,
47:
2079
7c
Samec JSM.
Ell AH.
Bäckvall J.-E.
Chem. Eur. J.
2005,
11:
2327
7d
Bailey AJ.
James BR.
Chem.
Commun.
1996,
2343
7e
Murahashi S.-I.
Angew.
Chem. Int. Ed. Engl.
1995,
34:
2443 ; Angew. Chem. 1995 , 107 , 2670
7f
Neumann R.
Levin M.
J. Org. Chem.
1991,
56:
5707
8a
Jiang G.
Chen J.
Huang J.-S.
Che C.-M.
Org. Lett.
2009,
11:
4568
8b
Iesce MR.
Cermola F.
Rubino M.
Curr. Org. Chem.
2007,
11:
1053
8c
Matsumoto M.
Kitano Y.
Kobayashi H.
Ikawa H.
Tetrahedron Lett.
1996,
37:
8191
8d
Ohkubo K.
Nanjo T.
Fukuzumi S.
Bull.
Chem. Soc. Jpn.
2006,
79:
1489
8e
Nicolas C.
Herse C.
Lacour J.
Tetrahedron
Lett.
2005,
46:
4605
8f
Baciocchi E.
Del Giacco T.
Lapi A.
Org.
Lett.
2004,
6:
4791
8g
Naya S.-I.
Iida Y.
Nitta M.
Tetrahedron
2004,
60:
459
9a
Fitzpatrick PF.
Arch. Biochem.
Biophys.
2010,
1:
13
9b
Rigby SE.
Basran J.
Combe JP.
Mohsen AW.
Toogood H.
van Thiel A.
Sutcliffe MJ.
Leys D.
Munro AW.
Scrutton NS.
Biochem.
Soc. Trans.
2005,
33:
754
9c
Hoegy SE.
Mariano PS.
Tetrahedron
1997,
53:
5027
9d
Kim JM.
Bogdan MA.
Mariano PS.
J. Am. Chem. Soc.
1993,
115:
10591
9e
Kim J.-M.
Cho I.-S.
Mariano PS.
J.
Org. Chem.
1991,
56:
4943
9f
Kim JM.
Bogdan MA.
Mariano PS.
J. Am. Chem. Soc.
1991,
113:
9251
9g
Simpson JT.
Krantz A.
Lewis FD.
Kokel B.
J. Am. Chem.
Soc.
1982,
104:
7155
10
McCormick DB.
J.
Heterocycl. Chem.
1970,
7:
447
11a
Baiocco P.
Barreca AM.
Fabbrini M.
Galli C.
Gentili P.
Org. Biomol. Chem.
2003,
1:
191
11b
Fabbrini M.
Galli C.
Gentili P.
J.
Mol. Catal. B: Enzymol.
2002,
18:
169
11c
Baciocchi E.
Belvedere S.
Bietti M.
Lanzalunga O.
Eur. J. Org. Chem.
1998,
299
11d
Bietti M.
Baciocchi E.
Steenken S.
J.
Phys. Chem. A
1998,
102:
7337
12
Green TW.
Wuts PGM.
Greene’s Protective Groups in Organic Synthesis
4th ed.:
Wiley-Interscience;
New
York:
2006.
13 It was shown in individual experiments
that the photostability of RFT was enhanced under acidic conditions. The
increased stability of RFT may result from protonation of the substrate,
protonation of deprotected products or protonation of RFT in the
excited state.
14 The distance between the reaction
flask and the LED array was about 1 cm. The reaction mixture was
heated by the intense irradiation to about 40 ˚C.
15
Orito K.
Horibata A.
Nakamura T.
Ushito H.
Nagasaki H.
Yuguchi M.
Yamashita S.
Tokuda M.
J. Am. Chem. Soc.
2004,
126:
14342
16
Ding HX.
Lu W.
Zhou CX.
Li HB.
Yang LX.
Zhang QJ.
Wu XM.
Baudoin O.
Cai JC.
Gueritte F.
Zhao Y.
Chin.
Chem. Lett.
2005,
16:
1279
17
Gil C.
Braese S.
Chem. Eur. J.
2005,
11:
2680
18
Lee O.-L.
Law K.-L.
Ho C.-Y.
Yang D.
J. Org. Chem.
2008,
73:
8829
19
Sibi MP.
Zhang R.
Manyem S.
J.
Am. Chem. Soc.
2003,
125:
9306
20
Zeggaf C.
Ponce J.
Journ P.
Dufour M.-N.
Castro B.
Tetrahedron
1989,
45:
5039
21
Dhaon MK.
Olsen RK.
Ramasamy K.
J.
Org. Chem.
1982,
47:
1962
22
Konda Y.
Takahashi Y.
Arima S.
Sato N.
Takeda K.
Dobashi K.
Baba M.
Harigaya Y.
Tetrahedron
2001,
57:
4311
23
Tamaki M.
Han G.
Hruby VJ.
J.
Org. Chem.
2001,
66:
38
24
Newsoroff GP.
Stemhell S.
Aust. J. Chem.
1968,
21:
747
25
Tehrani KA.
Van TN.
Karikomi M.
Rottiers M.
De Kimpe N.
Tetrahedron
2002,
58:
7145
26
Apodaca R.
Xiao W.
Org. Lett.
2001,
3:
1745
27
Sharma GVM.
Reddy CG.
Krishna PR.
J. Org. Chem.
2003,
68:
4574
28
Penn JH.
Lin Z.
J. Org. Chem.
1990,
55:
1554