Subscribe to RSS
DOI: 10.1055/s-0029-1218809
Unified Oxidation Protocol for the Synthesis of Carbonyl Compounds Using a Manganese Catalyst
Publication History
Publication Date:
02 June 2010 (online)
Abstract
We have developed a unified protocol for the oxidation of ethers, benzylic compounds, and alcohols to carbonyl compounds. The protocol uses catalytic amounts of manganese(II) chloride tetrahydrate and 4,4′,4′′-tri(t-butyl)-2,2′:6′,2′′-terpyridine in combination with a stoichiometric amount of either m-chloroperbenzoic acid (MCPBA) or potassium hydrogen peroxysulfate (KHSO5). A reagent system consisting of the Mn catalyst and MCPBA permitted the chemoselective sp³ C-H oxidation of alkyl ethers and benzylic compounds to generate the corresponding ketones. Alternatively, the water-soluble inorganic salt KHSO5 in combination with the Mn catalyst was used to oxidize alcohols to ketones or carboxylic acids. Importantly, the Mn catalyst/KHSO5 system eliminates technical difficulties associated with the isolation of carboxylic acid products. All the oxidations presented in this feature article proceed at sub-ambient temperature in an aerobic atmosphere, and can therefore be used in practical syntheses of complex organic molecules.
Key words
catalysis - oxidation - ethers - alcohols - ketones - carboxylic acids
-
1a
Ley SV. In Comprehensive Organic Synthesis Vol.7:Trost BM.Fleming I. Pergamon; Oxford: 1991. -
1b
Handbook
of Reagents for Organic Synthesis: Oxidizing and Reducing Agents
Burke SD.Danheiser RL. Wiley; Chichester: 1999. -
2a
Activation and Functionalization of C-H
Bonds
Goldberg KI.Goldman AS. American Chemical Society; Washington DC: 2004. -
2b
Handbook
of C-H Transformations
Vols. 1 and 2:
Dyker G. Wiley-VCH; Weinheim: 2005. -
2c
Handbook
of Reagents for Organic Synthesis: Reagents for Direct Functionalization
of C-H Bonds
Paquette LA.Fuchs PL. Wiley; Chichester: 2007. - For recent reviews on direct sp³ C-H transformations, see:
-
3a
Naota T.Takaya H.Murahashi S.-I. Chem. Rev. 1998, 98: 2599 -
3b
Costas M.Mehn MP.Jensen MP.Que L. Chem. Rev. 2004, 104: 939 -
3c
Davies HML.Long MS. Angew. Chem. Int. Ed. 2005, 44: 3518 -
3d
Godula K.Sames D. Science 2006, 312: 67 -
3e
Dick AR.Sanford MS. Tetrahedron 2006, 62: 2439 -
3f
Davies HML. Angew. Chem. Int. Ed. 2006, 45: 6422 -
3g
Christmann M. Angew. Chem. Int. Ed. 2008, 47: 2740 -
3h
Li C.-J. Acc. Chem. Res. 2009, 42: 335 -
3i
Daugulis O.Do H.-Q.Shabashov D. Acc. Chem. Res. 2009, 42: 1074 -
3j
Giri R.Shi B.-F.Engle KM.Maugel N.Yu J.-Q. Chem. Soc. Rev. 2009, 38: 3242 - For recent representative examples of direct C-H oxidation, see:
-
4a
Ohtake H.Higuchi T.Hirobe M. J. Am. Chem. Soc. 1992, 114: 10660 -
4b
Kaufman MD.Grieco PA.Bougie DW. J. Am. Chem. Soc. 1993, 115: 11648 -
4c
Groves JT.Bonchio M.Carofiglio T.Shalyaev K. J. Am. Chem. Soc. 1996, 118: 8961 -
4d
Shingaki T.Miura K.Higuchi T.Hirobe M.Nagano T. Chem. Commun. 1997, 861 -
4e
Kim C.Chen K.Kim J.Que L. J. Am. Chem. Soc. 1997, 119: 5964 -
4f
Breslow R.Huang Y.Zhang X.Yang J. Proc. Natl. Acad. Sci. U.S.A. 1997, 94: 11156 -
4g
Arnone A.Foletto S.Metrangolo P.Pregnolato M.Resnati G. Org. Lett. 1999, 1: 281 -
4h
Desai LV.Hull KL.Sanford MS. J. Am. Chem. Soc. 2004, 126: 9542 -
4i
Reddy BVS.Reddy LR.Corey EJ. Org. Lett. 2006, 8: 3391 -
4j
Chen MS.White MC. Science 2007, 318: 783 -
4k
Nizova GV.Shul’pin GB. Tetrahedron 2007, 63: 7997 -
4l
Chen K.Richter JM.Baran PS. J. Am. Chem. Soc. 2008, 130: 7247 -
4m
Chen K.Baran PS. Nature 2009, 459: 824 -
4n
Litvinas ND.Brodsky BH.Du Bois J. Angew. Chem. Int. Ed. 2009, 48: 4513 -
4o
Chen K.Eschenmoser A.Baran PS. Angew. Chem. Int. Ed. 2009, 48: 9705 -
4p
Chen MS.White MC. Science 2010, 327: 566 - 6
Kamijo S.Amaoka Y.Inoue M. Chem. Asian J. 2010, 5: 486 -
7a
Handbook of Reagents for Organic Synthesis:
Activating Agents and Protecting Groups
Pearson AJ.Roush WR. Wiley; Chichester: 1999. -
7b
Kociénski PJ. Protecting Groups Thieme; Stuttgart: 2000. -
7c
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis Wiley; New York: 2007. - For representative applications of methyl ethers as a synthetic intermediate in total syntheses, see:
-
8a
Corey EJ.Hong B. J. Am. Chem. Soc. 1994, 116: 3149 -
8b
Overman LE.Ricca DJ.Tran VD. J. Am. Chem. Soc. 1997, 119: 12031 -
8c
Pattenden G.Gonzalez MA.MuCulloch S.Walter A.Woodhead SJ. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 12024 -
8d
Overman LE.Velthuisen EJ. J. Org. Chem. 2006, 71: 1581 -
9a
Godfrey CRA. In Comprehensive Organic Synthesis Vol. 7:Trost BM.Fleming I. Pergamon; Oxford: 1991. Chap. 2.6. p.235-240 ; and references therein -
9b
Larock RC. Comprehensive Organic Transformations Wiley-VCH; New York: 1999. p.1641-1645 -
10a
Curci R.D’Accolti L.Fiorentino M.Fusco C.Adam W.González-Nuñez ME.Mello R. Tetrahedron Lett. 1992, 33: 4225 -
10b
van Heerden FR.Dixon JT.Holzapfel CW. Tetrahedron Lett. 1992, 33: 7399 - 11
Arnone A.Bernardi R.Cavicchioli M.Resnati G.
J. Org. Chem. 1995, 60: 2314 - For Ru-catalyzed oxidation of acyclic ethers, see:
-
12a
Carlsen PHJ.Katsuki T.Martin VS.Sharpless KB. J. Org. Chem. 1981, 46: 3936 -
12b
Schuda PF.Cichowicz MB.Heimann MR. Tetrahedron Lett. 1983, 24: 3829 - For examples of direct methyl ether oxidation, see:
-
13a
Bach RD.Taaffee TH.Holubka JW. J. Org. Chem. 1980, 45: 3439 -
13b
Olah GA.Gupta BGB.Fung AP. Synthesis 1980, 897 -
13c
Nishiguchi T.Bougauchi M.
J. Org. Chem. 1990, 55: 5606 -
13d
Rozen S.Dayan S.Bareket Y. J. Org. Chem. 1995, 60: 8267 -
13e
Suzuki H.Takeuchi T.Mori T. Bull. Chem. Soc. Jpn. 1997, 70: 3111 -
14a
Chen H.Tagore R.Das S.Incarvito C.Faller JW.Crabtree RH.Brudvig GW. Inorg. Chem. 2005, 44: 7661 -
14b
Das S.Incarvito CD.Crabtree RH.Brudvig GW. Science 2006, 312: 1941 -
14c
Das S.Brudvig GW.Crabtree RH. J. Am. Chem. Soc. 2008, 130: 1628 - For recent reports on Mn-catalyzed epoxidation in similar systems, see:
-
15a
Murphy A.Stack SP. J. Mol. Catal. A: Chem. 2006, 251: 78 -
15b
Kang B.Kim M.Lee J.Do Y.Chang S. J. Org. Chem. 2006, 71: 6721 -
15c
Nehru K.Kim SJ.Kim IY.Seo MS.Kim Y.Kim S.-J.Kim J.Nam W. Chem. Commun. 2007, 4623 -
15d
Guillemot G.Neuburger M.Pfaltz A. Chem. Eur. J. 2007, 13: 8960 -
15e
Ilyashenko G.Sale D.Motevalli M.Watkinson M.
J. Mol. Catal. A: Chem. 2008, 296: 1 -
15f
Ho K.-P.Wong W.-L.Lam K.-M.Lai C.-P.Chan TH.Wong K.-Y. Chem. Eur. J. 2008, 14: 7988 -
15g
Garcia-Bosch I.Company A.Fontrodona X.Ribas X.Costas M. Org. Lett. 2008, 10: 2095 -
16a
Duncan TV.Ishizuka T.Therien M. J. Am. Chem. Soc. 2007, 129: 9691 -
16b
Arzoumanian H.Bakhtchadjian R.Agrifoglio G.Atencio R.Briceño A. Transition Met. Chem. (Dordrecht, Neth.) 2006, 31: 681 - 17
Trost BM.Braslau R. J. Org. Chem. 1988, 53: 532 - For examples, see:
-
21a
Mello R.Fiorentino M.Fusco C.Curci R. J. Am. Chem. Soc. 1989, 111: 6749 -
21b
Davies HML.Manning JR. Nature 2008, 451: 417 -
21c
Fiori KW.Espino CG.Brodsky BH.Du Bois J. Tetrahedron 2009, 65: 3042 ; see also reference 4j - For reports on Mn-catalyzed benzylic C-H oxidation, see:
-
23a
Hamada T.Irie R.Hamachi K.Katsuki T. Tetrahedron 1998, 54: 10017 -
23b
Lee NH.Lee C.-S.Jung D.-S. Tetrahedron Lett. 1998, 39: 1385 -
23c
Havranek M.Singh A.Sames D. J. Am. Chem. Soc. 1999, 121: 8965 -
23d
Pan J.-F.Chen W. J. Mol. Catal. A: Chem. 2001, 176: 19 -
23e
Blay G.Fernández I.Giménez T.Pedro JR.Ruiz R.Pardo E.Lloret F.Muñoz MC. Chem. Commun. 2001, 2102 -
23f
Murahashi S.-I.Noji S.Hirabayashi T.Komiya N. Tetrahedron: Asymmetry 2005, 16: 3527 -
23g
Mardani HR.Golchoubian H. J. Mol. Catal. A: Chem. 2006, 259: 197 - For recent examples of catalytic benzylic C-H oxidations, see:
-
24a
Choudary BM.Prasad AD.Bhuma V.Swapna V. J. Org. Chem. 1992, 57: 5841 -
24b
Murahashi S.-I.Oda Y.Naota T.Kuwabara T. Tetrahedron Lett. 1993, 34: 1299 -
24c
Catino AJ.Nichols JM.Choi H.Gottipamula S.Doyle MP. Org. Lett. 2005, 7: 5167 -
24d
Bonvin Y.Callens E.Larrosa I.Henderson DA.Oldham J.Burton AJ.Barrett AGM. Org. Lett. 2005, 7: 4549 -
24e
Nakanishi M.Bolm C. Adv. Synth. Catal. 2007, 349: 861 -
24f
Nagano T.Kobayashi S. Chem. Lett. 2008, 37: 1042 -
25a
Walter DS. In Comprehensive Organic Functional Group Transformations Vol. 3:Katrizky AR.Meth-Cohn O.Rees CW.Pattenden G. Pergamon; Oxford: 1995. p.293-294 -
25b
Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations 2nd ed.: Wiley-VCH; New York: 1999. p.1205-1207 - For examples of Mn-catalyzed oxidation of alcohols, see:
-
28a
Berkessel A.Sklorz CA. Tetrahedron Lett. 1999, 40: 7965 -
28b
Brinksma J.Rispens MT.Hage R.Feringa BL. Inorg. Chim. Acta 2002, 337: 75 -
28c
Bagherzadeh M. Tetrahedron Lett. 2003, 44: 8943 -
28d
Bahramian B.Mirkhani V.Moghadam M.Amin AH. Appl. Catal., A 2006, 315: 52 -
28e
Mardani HR.Golchoubian H. Tetrahedron Lett. 2006, 47: 2349 -
28f
Rezaeifard A.Jafarpour M.Moghaddam GK.Amini F. Bioorg. Med. Chem. 2007, 15: 3097 -
28g
Romakh VB.Therrien B.Süss-Fink G.Shul’pin GB. Inorg. Chem. 2007, 46: 1315 - 29 For the oxidation of alcohols by
stoichiometric amounts of MnSO4 and Oxone, see:
Sánchez AV.Zárrage JG. J. Mex. Chem. Soc. 2007, 51: 213 - 30
Travis BR.Ciaramitaro BP.Borhan B. Eur. J. Org. Chem. 2002, 3429 - 33
Jõgi A.Paju A.Pehk T.Kailas T.Müürisepp A.-M.Kanger T.Lopp M. Synthesis 2006, 3031
References
See reference 1b, pp 231-236 (MnO2) and pp 311-317 (KMnO4).
18The addition of a small amount of water during preparation of the Mn catalyst helped to give reproducible results. Water dissolves the MnCl2 salt and promotes the formation of the Mn catalyst.
19Over-oxidation took place to produce cyclodocecane-1,5-dione as a byproduct (<5% yield).
20See the experimental section for details.
22Because methine C-H bonds have a higher intrinsic reactivity toward oxidation than do methylene C-H bonds, and no formation of octanoate ester was observed, we assumed that octanoic acid was generated through intermediate A; however, we cannot rule out the possibility of the involvement of intermediate B.
26For pioneering works on benzylic C-H oxidation with a Mn/terpy catalyst and tetrabutylammonium Oxone (TBA-Oxone), see reference 14.
27A stock solution of the premixed manganese complex in acetonitrile can be used.
31The reaction in the absence of the Mn catalyst gave no oxidized product 2a, and quantitative recovery of alcohol 5a was observed. This result eliminates the possibility that dioxirane is formed from acetone under the reaction conditions.
32Treatment of an olefin with the Mn catalyst/KHSO5 system resulted in clean formation of an epoxide (Scheme [6] ).