RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219196
A Straightforward Approach towards Substituted Morita-Baylis-Hillman Products via Hydrostannation of Acetylenic Ketones
Publikationsverlauf
Publikationsdatum:
14. Januar 2010 (online)
Abstract
Regioselective molybdenum-catalyzed hydrostannations of acetylenic ketones give rise to allenoxystannanes, which can be subjected to subsequent aldol reactions. Because aldehydes are not affected under the reaction conditions used, the hydrostannation-aldol addition can be performed as a one-pot reaction, providing easy access to substituted Morita-Baylis-Hillman-type products in a highly stereoselective fashion.
Key words
aldol addition - alkynes - enolates - hydrostannation - molybdenum - Morita-Baylis-Hillman
- Supporting Information for this article is available online:
- Supporting Information
- For recent reviews, see:
-
1a
Basavaiah D.Rao AJ.Satyanarayana T. Chem. Rev. 2003, 103: 811 -
1b
Basavaiah D.Rao KV.Reddy RJ. Chem. Soc. Rev. 2007, 36: 1581 -
1c
Masson G.Housseman C.Zhu J. Angew. Chem. Int. Ed. 2007, 46: 4614 ; Angew. Chem. 2007, 119, 4698 -
1d
Shi Y.-L.Shi M. Eur. J. Org. Chem. 2007, 2905 ; and references cited therein - 2 For a very recent review on aza-Morita-Baylis-Hillman reactions,
see:
Declerck V.Martinez M.Lamaty F. Chem. Rev. 2009, 109: 1 -
3a
Trost BM.Brennan MK. Org. Lett. 2007, 9: 3961 -
3b
Nemoto T.Fukuyama T.Yamamoto E.Tamura S.Fukuda T.Matsumoto T.Akimoto Y.Hamada Y. Org. Lett. 2007, 9: 927 -
3c
Cui HL.Feng X.Peng J.Lei J.Jiang K.Chen Y.-C. Angew. Chem. Int. Ed. 2009, 48: 5737 ; Angew. Chem. 2009, 121, 5847 -
4a
Navarre L.Darses S.Genet JP. Chem. Commun. 2004, 1108 -
4b
Kabalka GW.Venkataiah B.Dong G. Org. Lett. 2003, 5: 3803 -
4c
Gowrisankar S.Kim SH.Kim JN. Bull. Korean Chem. Soc. 2009, 30: 726 -
4d
Alcaide B.Almendros P.del Campo TM.Quiros MT. Chem. Eur. J. 2009, 15: 3344 - Selected recent examples:
-
5a
Kataoka T.Kinoshita H.Kinoshita S.Iwamura T.Watanabe S. Angew. Chem. Int. Ed. 2000, 39: 2358 ; Angew. Chem. 2000, 112, 2448 -
5b
Trost BM.Oi S. J. Am. Chem. Soc. 2001, 123: 1230 -
5c
Ramachandran P.Rudd MT.Burghardt TE.Reddy MVR. J. Org. Chem. 2003, 68: 9310 -
5d
Xue S.He L.Han K.-Z.Liu Y.-K.Guo Q.-X. Synlett 2005, 1247 -
5e
Xue S.He L.Han K.-Z.Liu Y.-K.Guo Q.-X. Synthesis 2006, 666 -
5f
Yoshizawa K.Shioiri T. Tetrahedron Lett. 2006, 47: 757 -
5g
Reynolds TE.Bharadwaj AR.Scheidt KA. J. Am. Chem. Soc. 2006, 128: 15382 -
5h
Reynolds TE.Scheidt KA. Angew. Chem. Int. Ed. 2007, 46: 7806 ; Angew. Chem. 2007, 119, 7952 -
5i
Yoshizawa K.Shioiri T. Tetrahedron 2007, 63: 6259 -
5j
Tarsis E.Gromova A.Lim D.Zhou G.Guoqiang C.Coltart DM. Org. Lett. 2008, 10: 4819 -
5k
Mueller AJ.Jennings MP. Org. Lett. 2008, 10: 1649 -
5l
Wadhwa K.Chintareddy VR.Verkade JG. J. Org. Chem. 2009, 74: 6681 - 6
Senapati BK.Hwang G.-S.Lee S.Ryu DH. Angew. Chem. 2009, 121: 4462 - Reviews on hydrometallations:
-
7a
Smith ND.Mancuso J.Lautens M. Chem. Rev. 2000, 100: 3257 -
7b
Trost BM.Ball ZT. Synthesis 2005, 853 -
8a
Kabalka GW.Yu S.Li N.-S.Lipprandt U. Tetrahedron Lett. 1999, 40: 37 -
8b
Yu S.Li N.-S.Kabalka GW. J. Org. Chem. 1999, 64: 5822 -
9a
Zhang HX.Guibe F.Balavoine G. J. Org. Chem. 1990, 55: 1857 -
9b
Trost BM.Li CJ. Synthesis 1994, 1267 -
10a
Rossi R.Carpita A.Cossi P. Tetrahedron Lett. 1992, 33: 4495 -
10b
Rossi R.Carpita A.Cossi P. Synth. Commun. 1993, 23: 143 -
10c
Sai H.Ogiku T.Nishitani T.Hiramatsu H.Horikawa H.Iwasaki T. Synthesis 1995, 582 -
11a
Cochran JC.Bronk BS.Terrence KM.Phillips HK. Tetrahedron Lett. 1990, 31: 6621 -
11b
Bellina F.Carpita A.Ciucci D.de Santis M.Rossi R. Tetrahedron 1993, 49: 4677 -
12a
Dodero VI.Koll LC.Mandolesi SD.Podesta JC. J. Organomet. Chem. 2002, 650: 173 -
12b
Dodero VI.Koll LC.Faraoni MB.Mitchell TN.Podesta JC. J. Org. Chem. 2003, 68: 10087 -
13a
Kazmaier U.Klein M. Chem. Commun. 2005, 501 -
13b
Deska J.Kazmaier U. Angew. Chem. Int. Ed. 2007, 46: 4570 ; Angew. Chem. 2007, 119, 4654 -
13c
Kazmaier U.Dörrenbächer S.Wesquet A.Lucas S.Kummeter M. Synthesis 2007, 320 -
13d
Wesquet AO.Kazmaier U. Angew. Chem. Int. Ed. 2008, 47: 3050 ; Angew. Chem. 2008, 120, 3093 - 14
Kazmaier U.Braune S. J. Organomet. Chem. 2002, 641: 26 -
15a
Kazmaier U.Schauß D.Pohlman M. Org. Lett. 1999, 1: 1017 -
15b
Kazmaier U.Pohlman M.Schauß D. Eur. J. Org. Chem. 2000, 2761 -
15c
Braune S.Pohlman M.Kazmaier U. J. Org. Chem. 2004, 69: 468 -
15d
Wesquet AO.Dörrenbächer S.Kazmaier U. Synlett 2006, 1105 -
16a
Kazmaier U.Schauß D.Pohlman M.Raddatz S. Synthesis 2000, 914 -
16b
Kazmaier U.Schauß D.Raddatz S.Pohlman M. Chem. Eur. J. 2001, 7: 456 -
16c
Kazmaier U.Wesquet AO. Synlett 2005, 8: 1271 -
16d
Jena N.Kazmaier U. Eur. J. Org. Chem. 2008, 3852 -
17a
Lin H.Kazmaier U. Eur. J. Org. Chem. 2009, 1221 -
17b
Wesquet AO.Kazmaier U. Adv. Synth. Catal. 2009, 1395 - 19
Leonard WR.Livinghouse T. J. Org. Chem. 1985, 50: 730
References and Notes
General Procedure for One-Pot Hydrostannation-Aldol Additions The acetylenic ketone (1.0 mmol), hydroquinone (10 mol%), and Mo(CO)3 (CNt-Bu)3 (MoBI3) (3 mol%) were dissolved in THF (3 mL) in a Schlenk tube under N2. Then Bu3SnH (1.2 mmol) and the corresponding aldehyde (1.2 mmol) were added, the flask was evacuated and flushed with CO. The mixture was warmed to 60 ˚C for 6 h. After cooling to r.t., the solvent was removed in vacuo, and the reaction mixture was subjected to column chromatography (silica, EtOAc-hexanes).
20
Analytical Data
of Selected ProductsAldol Product 4a
¹H
NMR (400 MHz, CDCl3): δ = 7.73
(dd, J = 8.4,
1.6 Hz, 2 H), 7.50 (tt, J = 7.6,
1.6 Hz, 1 H), 7.40-7.34 (m, 4 H), 7.32-7.26 (m,
2 H), 7.23-7.19 (m, 1 H), 5.91 (td, J = 7.6,
1.2 Hz, 1 H), 5.55 (s, 1 H), 3.24 (br s, 1 H, OH), 1.79 (q, J = 7.6 Hz, 2
H), 1.31 (sext, J = 7.6
Hz, 2 H), 0.75 (t, J = 7.6
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 200.1,
141.5, 141.4, 137.7, 134.7, 133.3, 129.2, 128.4, 128.3, 127.6, 126.3,
76.5, 31.7, 22.2, 13.5 ppm. HRMS (CI): m/z calcd
for C19H20O2 [M]+:
280.1463; found: 280.1461.
Aldol Product
(
Z
)-6a
¹H
NMR (400 MHz, CDCl3): δ = 8.13
(d, J = 8.4
Hz, 2 H), 7.45 (d, J = 8.4
Hz, 2 H), 7.25-7.03 (m, 3 H), 7.06 (dd, J = 8.4,
1.6 Hz, 2 H), 5.92 (t, J = 7.6
Hz, 1 H), 5.42 (s, 1 H), 3.27 (br s, 1 H, OH), 2.90-2.70
(m, 4 H), 2.18 (q, J = 7.6
Hz, 2 H), 1.45 (sext, J = 7.6
Hz, 2 H), 0.91 (t, J = 7.6
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 203.0,
150.6, 147.0, 146.9, 140.6, 140.5, 128.5, 128.3, 126.2, 126.0, 123.5,
69.8, 39.5, 30.8, 30.1, 22.0, 14.0 ppm.
Aldol
Product (
E
)-6a
¹H
NMR (400 MHz, CDCl3): δ = 8.14
(d, J = 8.8
Hz, 2 H), 7.47 (d, J = 8.8
Hz, 2 H), 7.29-7.18 (m, 3 H), 7.11 (dd, J = 8.4,
1.6 Hz, 2 H), 6.87 (t, J = 7.6
Hz, 1 H), 5.69 (s, 1 H), 3.08-2.91 (m, 2 H), 2.85 (t, J = 7.6 Hz,
2 H), 2.43 (sext, J = 7.6
Hz, 1 H), 2.34 (sext, J = 7.6
Hz, 1 H), 1.56 (sext d, J = 7.6,
2.0 Hz, 2 H), 1.00 (t, J = 7.6
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 203.0,
150.6, 147.0, 146.9, 140.6, 140.5, 128.5, 128.3, 126.3, 126.0, 123.5,
69.9, 39.5, 30.8, 30.1, 22.0, 14.0 ppm. HRMS (CI): m/z calcd
for C21H23NO4 [M]+:
353.1627; found: 353.1647.