RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219200
Enantioselective Synthesis of (+)-l-733,060 and (+)-CP-99,994: Application of an Ireland-Claisen Rearrangement/Michael Addition Domino Sequence
Publikationsverlauf
Publikationsdatum:
19. Januar 2010 (online)
Abstract
An efficient asymmetric synthesis of (+)-l-733,060, (-)-(2S,3R)-1 and (+)-CP-99,994, starting from a Baylis-Hillman adduct, is described. The key steps include a novel domino reaction: stereoselective Ireland-Claisen rearrangement, asymmetric Michael addition, and piperidone ring formation through a one-pot reaction hydrogenolysis/lactamization and a stereoselective inversion of a hydroxy group.
Key words
domino reactions - chiral piperidines - asymmetric synthesis - chiral auxiliaries - δ-amino acids
- 1
Harrison T.Williams BJ.Swain CJ.Ball RG. Bioorg. Med. Chem. Lett. 1994, 4: 2545 - 2
Lotz M.Vaughan JH.Carson DA. Science 1988, 241: 1218 - 3
Perianan A.Snyderman R.Malfroy B. Biochem. Biophys. Res. Commun. 1989, 161: 520 - 4
Moskowitz MA. Trends Pharmacol. Sci. 1992, 13: 307 - 5
Lotz M.Vaughan JH.Carson DA. Science 1987, 235: 893 - 6
Otsuka M.Yanagisawa M. J. Physiol. 1988, 395: 255 -
7a
Bilke JL.Moore SP.O’Brien P.Gilday J. Org. Lett. 2009, 11: 1935 -
7b
Venkataiah M.Rao BV.Fadnavis NW. Tetrahedron: Asymmetry 2009, 20: 198 ; and references cited therein - 8
Davis AF.Zhang Y.Li D. Tetrahedron Lett. 2007, 48: 7838 ; and references cited therein - 9
Garrido NM.García M.Díez D.Sánchez MR.Sanz F.Urones JG. Org. Lett. 2008, 10: 1687 - For relevant reviews, see:
-
10a
Ciganek E. Organic Reactions Vol. 51:Paquette LA. Wiley; New York: 1997. p.201 -
10b
Basavaiah D.Dharma Rao P.Suguna Hymna R. Tetrahedron 1996, 52: 8001 -
10c
Ghosh AK.Bilcer G.Schiltz G. Synthesis 2001, 2203 -
10d
List B.Castello C. Synlett 2001, 1687 - 12 For a comprehensive review covering
the scope, limitations and synthetic applications of the use of
enantiomerically pure lithium amides as homochiral ammonia equivalents
in conjugate addition reactions, see:
Davies SG.Smith AD.Price PD. Tetrahedron: Asymmetry 2005, 16: 2833 - For reviews, see:
-
13a
Hiersemann M.Nubbemeyer U. The Claisen Rearrangement: Methods and Applications. Wiley Interscience; Weinheim: 2007. -
13b
Martin Castro AM. Chem. Rev. 2004, 104: 2939 -
13c
Chai Y.Hong S.-P.Lindsay HA.McFarland C.McIntosh MC. Tetrahedron 2002, 58: 2905 -
13d
Enders D.Knopp M.Schiffers R. Tetrahedron: Asymmetry 1996, 7: 1847 -
13e
Ziegler FE. Chem. Rev. 1988, 88: 1423 - 16
Prasad KR.Anbarasan P. Tetrahedron 2006, 62: 8303 - 17
Mamos P.Karigiannis G.Athanassopoulos C.Bichta S.Kalpaxis D.Papaioannou D. Tetrahedron Lett. 1995, 36: 5187 -
18a
Demnitz FWJ.Philippini C.Raphael RA. J. Org. Chem. 1995, 60: 5114 -
18b
Cooper MS.Heaney H.Newbold J.Sanderson WR. Synlett 1990, 533 - 20
Doi M.Nishi Y.Kiritoshi N.Iwata T.Nago M.Nakano H.Uchiyama S.Nakazawa T.Wakamiya T.Kobayashi Y. Tetrahedron 2002, 58: 8453 - 21
Tsunoda T.Yamamiya Y.Kawamura Y.Itô S. Tetrahedron Lett. 1995, 36: 2529 - 22
Paulvannan K.Hale R.Sedehi D.Chen T. Tetrahedron 2001, 57: 9677 -
23a
Gemal AL.Luche J.-L. J. Am. Chem. Soc. 1981, 103: 5454 -
23b
Elliott J.Hall D.Warren S. Tetrahedron Lett. 1989, 30: 601 -
24a
Bhaskar G.Rao BV. Tetrahedron Lett. 2003, 44: 915 -
24b
Cherian SK.Kumar P. Tetrahedron: Asymmetry 2007, 18: 982
References and Notes
When the reaction was run for 12 h, the ratio of 4 to 5 was 1:5.
14To our knowledge, this is the first anionic allylic acetate rearrangement. Nevertheless, Prof. Matthias C. McIntosh et al. (personal communication) have observed a product that could be derived from such a rearrangement in a bis-allylic ester system.
15A diastereomeric excess of 89% was measured by ¹H NMR spectroscopic analysis of the crude product and >95% after crystallization. With a t-Bu ester of 4 we achieved >95% de in the crude material (ref. 9). An ee of >95% is consistent with the high optical purity of the lithium amide used.
19Physical Data of (-)-(2S,3R)-1: [α]D ²6 -36.0 (c 0.85, CHCl3). IR (film): 2929, 2857, 1373, 1346, 1278, 1174, 1133, 887, 843, 756, 700 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 1.46 (dq, J = 12.6, 4.0 Hz, 1 H, H-4), 1.67-1.89 (m, 1 H, H-5), 1.83 (d, J = 13.1 Hz, 1 H, H-5), 2.26-2.35 (m, 1 H, H-4), 2.72 (td, J = 11.8, 1.8 Hz, 1 H, H-6), 3.09 (d, J = 11.4 Hz, 1 H, H-6), 3.40 (dt, J = 9.8, 4.1 Hz, 1 H, H-3), 3.52 (d, J = 9.0 Hz, 1 H, H-2), 4.06 (d, J = 12.3 Hz, 1 H, OCH AH), 4.44 (d, J = 12.3 Hz, 1 H, OCHH B), 7.26-7.45 (m, 7 H, ArH), 7.68 (s, 1 H, ArHF para ). ¹³C NMR (100 MHz, CDCl3): δ = 24.9 (CH2, C-5), 31.3 (CH2, C-4), 46.6 (CH2, C-6), 67.6 (CH, C-2), 70.0 (CH2, OCH2), 81.3 (CH, C-3), 121.1 (CH, ArF para ), 121.9 (C, CCF3), 123.2 (C, q, J = 271.0 Hz, CCF3), 124.6 (C, CCF3), 127.2 (2 × CH, ArF ortho ), 127.9 (3 × CH, Ph ortho + para ), 128.3 (2 × CH, Ph meta ), 131.3 (C, q, J = 33.0 Hz, CCF3), 141.1 (C, C ipsoF ), 141.6 (C, C ipso ). HRMS (ESI): m/z [M + H]+ calcd for C20H20ONF6: 404.1449; found: 404.1421.
25All compounds were fully characterized by a range of methods including high-resolution mass spectrometry; the physical and spectroscopic data of reported compounds were in full agreement with those reported in the literature.