RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219201
One-Pot Synthesis of Unsymmetrical 2,3-Diarylindoles by Site-Selective Suzuki-Miyaura Reactions of N-Methyl-2,3-dibromoindole
Publikationsverlauf
Publikationsdatum:
15. Januar 2010 (online)
Abstract
The Suzuki-Miyaura reaction of N-methyl-2,3-dibromoindole with two equivalents of boronic acids gave symmetrical 2,3-diarylindoles. The reaction with one equivalent of arylboronic acid resulted in site-selective formation of 2-aryl-3-bromoindoles. The one-pot reaction of 2,3-dibromoindole with two different arylboronic acids afforded unsymmetrical 2,3-diarylindoles containing two different aryl groups.
Key words
catalysis - palladium - Suzuki-Miyaura reaction - site-selectivity - indole
-
1a
Szmuszkovicz J.Glenn EM.Heinzelman RV.Hester JB.Youngdale GA. J. Med. Chem. 1966, 9: 527 -
1b
El-Diwani H.Nakkady SS.Hishmat OH.El-Shabrawy OA.Mahmoud SS. Pharmazie 1992, 47: 178 -
1c
El-Diwani HI.Shmeiss NAMM.Saleh NM. Pol. J. Chem. 1995, 69: 470 -
1d
Shmeiss NAMM.Ismail MMF.El-Diwani HI.Hassan AB.Nada SA. Modell., Meas. Control C 1997, 55: 11 -
1e
Jones RL.Qian Y.-M.Wise H.Wong HNC.Lam W.-L.Chan H.-W.Yim APC.Ho JKS. J. Cardiovasc. Pharmacol. 1997, 29: 525 -
1f
Hishmat OH.Ebeid MY.Nakkady SS.Fathy MM.Mahmoud SS. Boll. Chim. Farm. 1999, 138: 259 -
2a
Glenn EM.Bowman BJ.Kooyers W.Koslowske T.Myers ML. J. Pharmacol. Exp. Ther. 1967, 155: 157 -
2b
Kaiser DG.Glenn EM.Johnson RH.Johnston RL. J. Pharmacol. Exp. Ther. 1967, 155: 174 -
2c
Whitehouse MW. J. Pharm. Pharmacol. 1967, 19: 590 -
2d
Collier HOJ.James GWL.Piper PJ. Br. J. Pharmacol. 1968, 34: 76 -
2e
Brune K.Graf P.Glatt M. Agents Actions 1976, 6: 159 -
2f
Podos SM.Becker B. Invest. Ophthalmol. 1976, 15: 841 -
2g
Spinelli HM.Krohn DL. Arch. Ophthalmol. 1980, 98: 1106 -
2h
Klug RD.Krohn DL.Breitfeller JM.Dieterich D. Ophthalmic Res. 1981, 13: 122 - 3 For a recent study, see:
McAdam BF.Catella-Lawson F.Mardini IA.Kapoor S.Lawson JA.FitzGerald GA. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 272 - 4 For a recent review of indole syntheses,
see:
Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000, 1045 - 5 Review:
Schröter S.Stock C.Bach T. Tetrahedron 2005, 61: 2245 - 6
Dang TT.Dang TT.Rasool N.Villinger A.Langer P. Adv. Synth. Catal. 2009, 351: 1595 - 7
Dang TT.Dang TT.Ahmad R.Reinke H.Langer P. Tetrahedron Lett. 2008, 49: 1698 - 8
Dang TT.Villinger A.Langer P. Adv. Synth. Catal. 2008, 350: 2109 -
9a
Ishikura M.Kamada M.Terashima M. Synthesis 1984, 936 -
9b
Yang Y.Martin AR. Synth. Commun. 1992, 22: 1757 -
9c
Carrera GMJr.Sheppard GS. Synlett 1994, 93 -
9d
Tidwell JH.Peat AJ.Buchwald SL. J. Org. Chem. 1994, 59: 7164 -
9e
Banwell MG.Bissett BD.Busato S.Cowden CJ.Hockless DCR.Holman JW.Read RW.Wu AW. J. Chem. Soc., Chem. Commun. 1995, 2551 -
9f
Merlic CA.McInnes DM.You Y. Tetrahedron Lett. 1997, 38: 6787 -
9g
Merlic CA.McInnes DM. Tetrahedron Lett. 1997, 38: 7661 -
9h
Moody CJ.Doyle KJ.Elliott MC.Mowlem TJ. J. Chem. Soc., Perkin Trans. 1 1997, 2413 -
9i
Chu L.Fisher MH.Goulet MT.Wyvratt MJ. Tetrahedron Lett. 1997, 38: 3871 -
9j
Carbonnelle A.-C.González-Zamora EG.Beugelmans R.Roussi G. Tetrahedron Lett. 1998, 39: 4467 -
9k For reactions of triflates,
see:
Chi SM.Choi J.-K.Yum EK.Chi DY. Tetrahedron Lett. 2000, 41: 919 -
9l
Joseph B.Malapel B.Mérour J.-Y. Synth. Commun. 1996, 26: 3289 -
9m
Malapel-Andrieu B.Mérour J.-Y. Tetrahedron 1998, 54: 11079 - 10
Kawasaki I.Yamashita M.Ohta S. Chem. Pharm. Bull. 1996, 44: 1831 - 11
Hussain M.Dang TT.Langer P. Synlett 2009, 1822 -
12a
Liu Y.Gribble GW. Tetrahedron Lett. 2000, 41: 8717 -
12b For metal-halide
exchange, see:
Liu Y.Gribble GW. Tetrahedron Lett. 2002, 43: 7135 - 18
Billingsley K.Buchwald SL. J. Am. Chem. Soc. 2007, 129: 3358 ; and references cited therein
References and Notes
General Procedure
for the Synthesis of 3a-e and 4a-e
The
reaction was carried out in a pressure tube. A 1,4-dioxane solution
(4 mL) of 1, K3PO4,
Pd(PPh3)4, and arylboronic acid 2 was stirred at 110 ˚C or 70 ˚C
for 6 h or 8 h. After cooling to 20 ˚C, a sat.
aq solution of NH4Cl was added. The organic and the aqueous
layer were separated, and the latter was extracted with CH2Cl2.
The combined organic layers were dried (Na2SO4),
filtered, and the filtrate was concentrated in vacuo. The residue
was purified by flash chromatography (silica gel, heptanes).
2,3-Bis(4-ethylphenyl)-1-methyl-1
H
-indole (3c)
Starting with 1 (289
mg, 1.0 mmol), 2c (262 mg, 2.3 mmol), K3PO4 (446
mg, 2.1 mmol), Pd(PPh3)4 (3 mol%),
and 1,4-dioxane (4 mL), 3c was isolated
as a yellowish oil (291 mg, 86%). ¹H
NMR (300 MHz, CDCl3): δ = 1.01
(t, J = 7.5
Hz, 3 H, CH3), 1.05 (t, J = 7.5
Hz, 3 H, CH3), 2.40 (q, J = 7.5
Hz, 2 H, CH2), 2.48 (q, J = 7.5
Hz, 2 H, CH2), 3.42 (s, 3 H, NCH3), 6.90-6.96
(m, 3 H, ArH), 7.02-7.10 (m, 7 H, ArH), 7.25 (d, J = 8.2 Hz,
1 H, ArH), 7.51 (d, J = 7.8
Hz, 1 H, ArH). ¹³C NMR (75.47 MHz,
CDCl3): δ = 15.8
(CH3), 16.0 (CH3), 29.1 (CH2),
29.2 (CH2), 31.2 (CH3), 110.7 (CH), 115.4
(C), 120.0 (CH), 121.0 (CH), 123.0 (CH), 128.1 (C), 128.5 (2 CH),
128.7 (2CH), 130.3 (C), 130.6 (2 CH), 132.0 (2 CH), 133.7 (C), 138.3
(C), 138.4 (C), 142.0 (C), 144.9 (C). IR (ATR): ν = 3047
(w), 3022 (w), 2961 (s), 2928 (w), 1797 (w), 1765 (w), 1726 (w),
1519 (m), 1463 (s), 1362 (m), 1325 (m), 1257 (m), 1131 (w), 1115
(w), 1089 (m), 1060 (w), 1017 (m), 967 (w), 923 (w), 869 (m), 836
(s), 801 (w), 740 (s), 652 (w), 629 (m), 545 (m) cm-¹.
MS (EI, 70 eV):
m/z (%) = 340
(28) [M + 1]+, 339
(100) [M+], 324 (34), 309 (5),
294 (5), 281 (5), 278 (4), 146 (5). HRMS (EI): m/z calcd for
C25H25N [M+]:
339.19815; found: 339.197901.
3-Bromo-2-(3,4-dimethoxyphenyl)-1-methyl-1
H
-indole (4d)
Starting with 1 (289
mg, 1.0 mmol), 2i (200 mg, 1.1 mmol), K3PO4 (318
mg, 1.5 mmol), Pd(PPh3)4 (3 mol%),
and 1,4-dioxane (4 mL), 4d was isolated
as a yellowish solid (272 mg, 79%), mp 146-148 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 3.59
(s, 3 H, NCH3), 3.84 (s, 3 H, OCH3), 3.87
(s, 3 H, OCH3), 6.93-6.95 (m, 2 H, ArH), 7.11-7.27
(m, 4 H, ArH), 7.50-7.53 (m, 1 H, ArH). ¹³C
NMR (62.89 MHz, CDCl3): δ = 30.6
(CH3), 54.9 (OCH3), 55.0 (OCH3),
88.9 (C), 108.6 (CH), 109.9 (CH), 112.8 (CH), 118.2 (CH), 119.5
(CH), 121.7 (CH), 121.8 (C), 122.4 (CH), 126.1 (C), 135.7 (C), 137.0
(C), 147.8 (C), 148.4 (C). IR (ATR): ν = 3052
(w), 2960 (w), 2924 (w), 1607 (w), 1584 (w), 1502 (m), 1462 (m),
1445 (m), 1404 (w), 1379 (w), 1339 (w), 1317 (w), 1257 (s), 1239
(s), 1168 (m), 1136 (s), 1022 (s), 945 (m), 911 (w), 858 (m), 812
(m), 777 (w), 750 (s), 654 (m), 575 (w), 547 (w) cm-¹.
MS (EI, 70 eV): m/z (%) = 348
(18) [M + 1, 8¹Br]+,
347 (100) [M+, 8¹Br],
346 (19) [M + 1, 79Br]+,
345 (98) [M+, 79Br],
331 (3), 302 (5), 302 (5), 300(4), 267 (3), 251 (5), 223 (24), 180
(10), 152 (7), 102 (5), 89 (2).
HRMS (EI, 70 eV): m/z calcd for C17H16O2NBr [M+, 8¹Br]: 347.03385;
found: 347.033958; m/z calcd
for C17H16O2NBr [M+, 79Br]:
345.03589; found: 345.035679.
General procedure
for the synthesis of 5a-e
The reaction was carried
out in a pressure tube. To a dioxane suspension (4 mL) of 1 (215 mg, 0.75 mmol), Pd(PPh3)4 (3 mol%),
and Ar¹B(OH)2 (0.82 mmol) was added
K3PO4 (238 mg, 1.1 mmol), and the solution
was degassed by bubbling argon through the solution for 10 min.
The mixture was heated at 70 ˚C under argon atmosphere
for 6 h. The mixture was cooled to 20 ˚C. To the
solution was added Ar²B(OH)2 (0.90
mmol) and K3PO4 (238 mg, 1.1 mmol), and the solution
was degassed again. The reaction mixture was heated under argon
atmosphere for 8 h at 110 ˚C. After cooling to
20 ˚C, the solution was diluted with H2O
and extracted with CH2Cl2 (3 × 25
mL). The combined organic layers were dried (Na2SO4),
filtered, and the filtrate was concentrated in vacuo. The residue
was purified by flash chromatography (silica gel, heptanes).
2-(2,5-Dimethoxyphenyl)-1-methyl-3-phenyl-1 H -indole (5a) Starting with 1 (215 mg, 0.75 mmol), 2k (150 mg, 0.82 mmol), 2a (110 mg, 0.9 mmol), K3PO4 (488 mg, 2.3 mmol), Pd(PPh3)4 (4 mol%), and 1,4-dioxane (4 mL), 5a was isolated as a yellowish oil (177 mg, 69%). ¹H NMR (250 MHz, CDCl3): δ = 3.40 (s, 3 H, NCH3), 3.44 (s, 3 H, OCH3), 3.52 (s, 3 H, OCH3), 6.54 (d, J = 3.1 Hz, 1 H, ArH), 6.77-6.82 (m, 1 H, ArH), 6.87-6.98 (m, 3 H, ArH), 7.04-7.18 (m, 5 H, ArH), 7.28 (d, J = 8.3 Hz, 1 H, ArH), 7.56 (d, J = 7.8 Hz, 1 H, ArH). ¹³C NMR (62.9 MHz, CDCl3): δ = 30.7 (NCH3), 55.9 (OCH3), 56.3 (OCH3), 110.5 (CH), 113.3 (CH), 115.7 (C), 115.8 (CH), 119.5 (CH), 119.8 (CH), 120.6 (CH), 122.5 (C), 122.6 (CH), 126.2 (CH), 127.7 (C), 129.0 (2 CH), 130.1 (2 CH), 135.7 (C), 136.7 (C), 138.1 (C), 153.7 (C), 154.4 (C). IR (ATR): ν = 3051 (w), 2936 (w), 2832 (w), 1736 (w), 1712 (w), 1602 (w), 1549 (w), 1502 (m), 1485 (m), 1463 (m), 1366 (m), 1273 (m), 1225 (m), 1210 (m), 1039 (m), 1020 (m), 941 (w), 918 (w), 876 (w), 805 (w), 772 (m), 735 (s), 700 (s), 616 (w), 570 (w), 531 (w) cm-¹. MS (EI, 70 eV): m/z (%) = 344 (26) [M + 1]+, 343 (100) [M+], 342 (15), 328 (6), 311 (4), 297 (7), 268 (5), 230 (5), 171 (4), 121 (5). HRMS (EI, 70 eV): m/z calcd for C23H21O2N [M+]: 343.15668; found: 343.156144.