RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219542
An 1,2-Elimination Approach to the Enantioselective Synthesis of 1,3-Disubstituted Linear Allenes
Publikationsverlauf
Publikationsdatum:
23. Februar 2010 (online)
Abstract
The construction of 1,3-disubstituted allene skeleton, which is present in many natural allenes, via an i-PrMgBr-mediated elimination of optically active 3-acetoxy-2-iodo-prop-1-ene derviatives is exemplified through the enantioselective total synthesis of two bioactive natural allenes.
Key words
alkynes - carbanions - elimination - halides - natural products
- Supporting Information for this article is available online:
- Supporting Information
- See, e.g.:
-
1a
Gooding OW.Beard CC.Jackson DY.Wren DL.Cooper GF. J. Org. Chem. 1991, 56: 1083 -
1b
D’Aniello F.Mann A.Taddei M. J. Org. Chem. 1996, 61: 4870 -
1c
Sherry BD.Toste FD. J. Am. Chem. Soc. 2004, 126: 15978 -
1d
Colas Y.Cazes B.Gore J. Tetrahedron Lett. 1984, 25: 845 -
1e
Fürstner A.Méndez M. Angew. Chem. Int. Ed. 2003, 42: 5355 - For chiral-catalyst-induced asymmetric synthesis, see e.g.:
-
1f
Li C.Wang X.Sun X.Tang Y.Zheng J.Xu Z.Zhou Y.Dai L. J. Am. Chem. Soc. 2007, 129: 1494 -
1g
Imada Y.Nishida M.Kutsuwa K.Murahashi S.Naota T. Org. Lett. 2005, 7: 5837 - 2
Hoffmann-Röder A.Krause N. Angew. Chem. Int. Ed. 2004, 43: 1096 -
3a
Blomquist AT.Burge RE.Sucsy AC. J. Am. Chem. Soc. 1952, 74: 3636 -
3b
Semmelhack MF.Brickner SJ. J. Am. Chem. Soc. 1981, 103: 3945 -
3c
Hässig R.Seebach D.Siegel H. Chem. Ber. 1984, 117: 1877 -
3d
Barlunenga J.Fernández JR.Yus M.
J. Chem. Soc., Chem. Commun. 1985, 203 -
3e
Gabbutt CD.Hepworth JD.Heron BM.Rahman MM. J. Chem. Soc., Perkin Trans. 1 1994, 1733 -
3f
Bhuvaneswari N.Venkatachalam CS.Balasubramanian KK. J. Chem. Soc., Chem. Commun. 1994, 1177 -
3g
Nagaoka Y.Tomioka K. J. Org. Chem. 1998, 63: 6428 -
3h
Lange T.van Loon J.-D.Tykwinski RR.Schreiber M.Dieterich F. Synthesis 1996, 537 -
3i
Ohno H.Toda A.Oishi S.Tanaka T.Takemoto Y.Fuji N.Ibuka T. Tetrahedron Lett. 2000, 41: 5131 -
3j
Tius MA.Pal SK. Tetrahedron Lett. 2001, 42: 2605 -
3k
Fletcher MT.McGrath MJ.König WA.Moore CJ.Cribb BW.Allsopp PG.Kitching W. Chem. Commun. 2001, 885 -
3l
Oishi S.Toda A.Takemoto Y.Fuji N.Ibuka T. J. Org. Chem. 2002, 67: 1359 -
3m
Ohno H.Takeoka Y.Kadoh Y.Miyamura K.Tanaka T. J. Org. Chem. 2004, 69: 4541 -
3n
Yamazaki T.Yamamoto T.Ichihara R. J. Org. Chem. 2006, 71: 6251 - For elimination of α-acetoxyl alkenyl tributyltin, see:
-
4a
Konoik T.Araki Y. Tetrahedron Lett. 1988, 29: 1355 ; cf. also ref. 3k - For elimination of α-acetoxyl alkenyl sulfoxides, see:
-
4b
Satoh T.Itoh N.Watanabe S.Koike H.Matsuno H.Matsuda K.Yamakawa K. Tetrahedron 1995, 51: 9327 -
4c
Satoh T.Kuramochi Y.Inoue Y. Tetrahedron Lett. 1999, 40: 8815 -
4d
Satoh T.Hanaki N.Kuramochi Y.Inoue Y.Hosoya K.Sakai K. Tetrahedron 2002, 58: 2533 - 6
Zhu L.Wehmeyer RM.Rieke RD. J. Org. Chem. 1991, 56: 1445 -
7a
Rieke RD. Science 1989, 246: 1260 -
7b
Rieke RD.Hanson MV. Tetrahedron 1997, 53: 1925 -
7c
Lee J.Velarde-Ortiz R.Guijarro AR.Wurst J.Rieke RD. J. Org. Chem. 2000, 65: 5428 - 8
Hässig R.Seebach D.Siegel H. Chem. Ber. 1984, 117: 1877 -
10a
Krasovskiy A.Knochel P. Angew. Chem. Int. Ed. 2004, 43: 3333 -
10b
Krasovskiy A.Straub B.Knochel P. Angew. Chem. Int. Ed. 2006, 45: 159 -
10c
Ren H.Krasovskiy A.Knochel P. Org. Lett. 2004, 6: 4215 -
10d
Ren H.Krasovskiy A.Knochel P. Chem. Commun. 2005, 4: 543 -
10e
Kopp F.Krasovskiy A.Knochel P. Chem. Commun. 2004, 20: 2288 -
10f
Kopp F.Knochel P. Org. Lett. 2007, 9: 1639 -
10g
Kopp F.Wunderlich S.Knochel P. Chem. Commun. 2007, 20: 2075 -
10h
Knochel P.Cahiez G.Boymond L.Rottlander M. Angew. Chem. Int. Ed. 1998, 37: 1701 -
12a
Babudri F.Fiandanese V.Hassan O.Punzi A.Naso F. Tetrahedron 1998, 54: 4327 -
12b
The substrate utilized in this work was conveniently derived by a Novezyme 435 resolution of the racemic propargylic alcohol. For details, see the Supporting Information.
- 13
Ma S.Lu X. J. Chem. Soc., Chem. Commun. 1990, 1643 -
14a
Denis RC.Gravel D. Tetrahedron Lett. 1994, 35: 4531 -
14b
Denmark SE.Jones TK. J. Org. Chem. 1982, 47: 4595
References and Notes
For clarity, synthesis of 6a-c is given in the Supporting Information.
9Although i-PrMgBr-mediated elimination of sulfoxides are known (cf. ref. 4b,c), it has never been utilized (to our knowledge) for elimination of α-acetoxyalkenyl halides.
11Lower level of functional-group tolerance is also a major concern here, although the simultaneous cleavage of the terminal Ac protecting group is beneficial in this synthesis.
15All attempts to separate the enantiomers of 14 by chiral HPLC failed.
16Unlike sulfoxides, there is no stereogenic center in iodide. No loss of stereogenic centers occurred with the elimination of the halides.
17
Representative
Procedures
Conversion of 6a into
7
A solution of 6a (150 mg,
0.30 mmol) in dry THF (2 mL) was added dropwise via a syringe to
a solution of i-PrMgBr (2 M, in Et2O,
0.9 mL, 1.8 mmol) in dry THF (5 mL) stirred at -78 ˚C
under argon. After completion of the addition, the stirring was
continued at -60 ˚C for 2.5 h. Aqueous sat. NH4Cl
was added. The mixture was extracted with Et2O (50 mL),
washed with H2O and brine before being dried over anhyd
Na2SO4. Removal of the solvent by rotary evaporation and
column chromatography (PE-EtOAc, 100:1) on silica gel gave
allene 7 as a colorless oil (84 mg, 0.28
mmol, 93%) along with recovered 6a (6
mg, 0.012 mmol, 4%).
Data
for 7
[α]D
²7 -33.7 (c 0.9, CHCl3). ¹H
NMR (300 MHz, CDCl3):
δ = 5.28-5.20
(m, 2 H), 4.54 (dd, J = 5.8,
2.8 Hz, 2 H), 3.62 (t, J = 6.4
Hz, 2 H), 2.07 (s, 3 H), 2.10-2.02 (m, 2 H), 1.54 (quint, J = 7.3 Hz,
2 H), 1.48 (quint, J = 7.1
Hz, 2 H), 0.90 (s, 9 H), 0.05 (s, 6 H). ¹³C
NMR (75 MHz, CDCl3): δ = 205.4, 170.8,
92.8, 86.9, 62.90, 62.87, 32.1, 28.1, 25.9, 25.3, 21.0, 18.3, -5.3.
FT-IR (film): 2955, 2930, 2858, 1963, 1744, 1227, 1103 cm-¹.
ESI-MS: m/z = 321.1 [M + Na]+. HRMS
(MALDI): m/z calcd for C16H30SiO3Na [M + Na]+: 321.1856;
found: 321.1863.