Subscribe to RSS
DOI: 10.1055/s-0029-1219545
Rapid Assembly of the Tetracyclic Core of Subincanadine F by a 7-exo Heck Cyclization
Publication History
Publication Date:
23 February 2010 (online)
Abstract
An efficient approach to the tetracyclic bridged framework of the indole alkaloid subincanadine F by a 7-exo Heck cyclization of a 2-iodoindole upon a double bond included in a tetrahydropyridine system is described.
Key words
indoles - cyclization - palladium - Heck reaction - alkaloids
-
1a
Bennasar M.-L.Zulaica E.Solé D.Alonso S. Chem. Commun. 2009, 3372 -
1b
Bennasar M.-L.Zulaica E.Solé D.Roca T.García-Díaz D.Alonso S. J. Org. Chem. 2009, 74: 8359 - 2
Gao P.Liu Y.Zhang L.Xu P.-F.Wang S.Lu Y.He M.Zhai H. J. Org. Chem. 2006, 71: 9495 - 3
Chen P.Cao L.Li C. J. Org. Chem. 2009, 74: 7533 -
4a
Solé D.Serrano O. J. Org. Chem. 2008, 73: 2476 -
4b
Solé D.Serrano O. J. Org. Chem. 2008, 73: 9372 - General reviews:
-
5a
Trepohl VT.Oestreich M. In Modern Arylation MethodsLutz A. Wiley-VCH; Weinheim: 2009. p.221 -
5b
Zeni G.Larock RC. Chem. Rev. 2006, 106: 464 -
5c
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4442 -
5d
Bräse S.de Meijere A. In Metal-Catalyzed Cross-Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; New York: 2004. p.217 - 6
Bennasar M.-L.Zulaica E.Solé D.Alonso S. Synlett 2008, 667 - 7
Kobayashi J.Sekiguchi M.Shimamoto S.Shigemori H.Ishiyama H.Ohsaki A. J. Org. Chem. 2002, 67: 6449 - For the synthesis of azepino[4,5-b]indoles by Heck reactions of 2- and 3-haloindoles, see:
-
8a
Sundberg RJ.Cherney RJ. J. Org. Chem. 1990, 55: 6028 -
8b
Stewart SG.Heath CH.Ghisalberti EL. Eur. J. Org. Chem. 2009, 1934 - For related processes promoted by Pd(II), see:
-
9a
Trost BM.Genêt JP. J. Am. Chem. Soc. 1976, 98: 8516 -
9b
Trost BM.Godleski SA.Genêt JP. J. Am. Chem. Soc. 1978, 100: 3930 - 10
Kuethe JT.Wong A.Davies IW.Reider PJ. Tetrahedron Lett. 2002, 43: 3871 - 11
Elderfield RC.Fischer B.Lagowski JM. J. Org. Chem. 1957, 22: 1376 - 15 For a review on the bite angle effects
of diphosphines in C-C coupling reactons, see:
Birkholz M.-N.Freixa Z.van Leeuwen PWNM. Chem. Soc. Rev. 2009, 38: 1099
References and Notes
Tetrahydropyridine
3a
¹H NMR (300 MHz, CDCl3): δ = 2.25
(m, 2 H), 2.63 (m, 2 H), 2.71 (t, J = 5.7
Hz, 2 H), 3.01 (m, 2 H), 3.14 (m, 2 H), 3.73 (s, 3 H), 5.71 (dm, J = 9.9 Hz,
1 H), 5.79 (dm, J = 9.9 Hz,
1 H), 7.07 (ddd, J = 7.8,
7.2, 1.2 Hz, 1 H), 7.15 (ddd, J = 8.1,
7.2, 1.2 Hz, 1 H), 7.28 (dd, J = 8.1,
1.2 Hz, 1 H), 7.56 (dd, J = 7.8,
1.2 Hz, 1 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 25.4
(CH2), 26.2 (CH2), 34.1 (Me), 50.0 (CH2), 52.6
(CH2), 58.5 (CH2), 87.4 (C), 109.6 (CH), 118.1
(CH), 119.0 (C), 119.2 (CH), 121.8 (CH), 125.2 (CH), 125.3 (CH), 127.6
(C), 138.5 (C). ESI-HRMS: m/z calcd
for C16H20IN2 [M + H]+:
367.0666; found: 367.0664.
Tetrahydropyridine
3b
¹H NMR (300 MHz, CDCl3): δ = 2.22
(m, 2 H), 2.52 (m, 2 H), 2.65 (t, J = 5.7
Hz, 2 H), 2.93 (m, 2 H), 3.08 (m, 2 H), 5.68 (dm, J = 9.9
Hz, 1 H), 5.77 (dm, J = 9.9
Hz, 1 H), 7.20-7.31 (m, 2 H), 7.36-7.55 (m, 4
H), 7.84 (m, 2 H), 8.30 (m, 1 H). ¹³C
NMR (75.5 MHz, CDCl3): δ = 25.8
(CH2), 26.1 (CH2), 49.9 (CH2),
52.5 (CH2), 56.8 (CH2), 79.4 (C), 115.9 (CH),
118.5 (CH), 123.7 (CH), 125.0 (CH), 125.2 (CH), 127.0 (CH), 129.0
(2 CH), 130.4 (C), 130.7 (C), 133.8 (CH), 138.0 (C), 139.2 (C).
ESI-HRMS: m/z calcd for C21H22IN2O2S [M + H]+:
493.0441; found: 493.0439.
It should be noted that in the reduction of 2b with NaBH4 (MeOH, 0 ˚C) the hydrodehalogenated product 5b was also obtained (13%). This side product was formed even when the reduction was carried out at -10 ˚C.
16
Heck Cyclization
of 3a (Table 1, Entry 6)
Pd2(dba)3 (17
mg, 0.019 mmol), dppp (24 mg, 0.058 mmol), and K2CO3 (79
mg, 0.57 mmol) were successively added to a solution of iodoindole 3a (70 mg, 0.19 mmol) in toluene (10 mL),
and the resulting mixture was heated at 80 ˚C for 18 h.
The reaction mixture was poured into H2O and extracted
with Et2O (3 × 50 mL). The
organic extracts were washed with brine, dried, and concentrated.
The resulting residue was chromatographed (SiO2, flash,
from CH2Cl2 to CH2Cl2-MeOH
8%) to give tetracycle 4a; 31
mg (68%). ¹H NMR (300 MHz, CDCl3): δ = 2.81
(ddd, J = 15.6,
4.2, 3.3 Hz, 1 H), 3.10 (dq, J = 15.6,
6.9 Hz, 1 H), 3.25 (m, 2 H), 3.31 (dm, J = 18.0
Hz, 1 H), 3.39 (br, 1 H), 3.50 (m, 2 H), 3.71 (s, 3 H), 3.82 (dm, J = 18.0 Hz,
1 H), 5.84 (m, 2 H), 7.07 (ddd, J = 7.5,
6.9, 1.2 Hz, 1 H), 7.15 (ddd, J = 8.1,
6.9, 1.2 Hz, 1 H), 7.24 (dd, J = 8.1,
1.2 Hz, 1 H), 7.45 (dd, J = 7.5,
1.2 Hz, 1 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 22.9
(CH2), 29.5 (Me), 31.2 (CH), 49.7 (CH2), 51.0
(CH2), 56.2 (CH2), 109.0 (CH), 112.7 (C),
117.5 (CH), 119.0 (CH), 120.6 (CH), 125.2 (CH), 126.1 (CH), 127.5
(C), 135.9 (C), 139.0 (C). ESI-HRMS: m/z calcd
for C16H19N2 [M + H]+:
239.1543; found: 239.1545.
Tetracycle 4b
¹H
NMR (300 MHz, CDCl3): δ = 2.65
(ddd, J = 15.6,
3.9, 1.8 Hz, 1 H), 2.95-3.27 (m, 5 H), 3.37 (dd, J = 14.1,
4.8 Hz, 1 H), 3.74 (dm, J = 18.3
Hz, 1 H), 4.16 (m, 1 H), 5.64 (dm, J = 9.9
Hz, 1 H), 5.82 (dm, J = 9.9
Hz, 1 H), 7.21-7.47 (m, 5 H), 7.55 (tt, J = 7.5,
1.2 Hz, 1 H), 7.71 (m, 2 H), 8.23 (dm, J = 8.1
Hz, 1 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 22.7 (CH2),
31.4 (CH), 49.6 (CH2), 50.7 (CH2), 54.6 (CH2),
115.1 (CH), 117.8 (CH), 122.7 (C), 123.4 (CH), 124.3 (CH), 125.1 (CH),
125.8 (CH), 126.1 (CH), 129.3 (CH), 130.3 (C), 133.7 (CH), 136.2
(C), 138.4 (C), 139.4 (C). ESI-HRMS: m/z calcd for
C21H21N2O2S [M + H]+:
365.1318; found: 365.1319.
Tetracycle 4c
¹H
NMR (400 MHz, CDCl3): δ = 2.75
(ddd, J = 15.6,
4.0, 2.4 Hz, 1 H), 3.08 (ddd, J = 15.6,
12.0, 3.2 Hz, 1 H), 3.14 (br s, 1 H), 3.22 (ddd, J = 13.6,
12.0, 2.0 Hz, 1 H), 3.29-3.40 (m, 2 H), 3.48 (m, 2 H),
3.83 (dm, J = 18.8
Hz, 1 H), 5.83 (dm, J = 10.0
Hz, 1 H), 5.89 (dm, J = 10.0
Hz, 1 H), 7.06-7.13 (m, 2 H), 7.28 (m, 1 H), 7.45 (dd, J = 6.0, 2.0
Hz, 1 H), 7.89 (br, 1 H). ¹³C NMR (100.5
MHz, CDCl3): δ = 23.0
(CH2), 34.7 (CH), 49.3 (CH2), 51.3 (CH2),
56.3 (CH2), 110.5 (CH), 112.8 (C), 117.5 (CH), 119.4
(CH), 120.8 (CH), 125.4 (CH), 126.0 (CH), 129.0 (C), 134.3 (C),
137.8 (C). ESI-HRMS:
m/z calcd
for C15H17N2 [M + H]+:
225.1386; found: 225.1384.