RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219553
Chemo-, Regio-, and Stereoselective Synthesis of syn-Aryl Glycol Monoesters from Aryl Olefins with Hydrogen Peroxide Catalyzed by RuCl3
Publikationsverlauf
Publikationsdatum:
26. Februar 2010 (online)
Abstract
Chemo-, regio-, and stereoselectivity have been achieved in the oxidations of aryl olefins. The aryl olefins were oxidized by 2 equivalents of H2O2 in acetic acid, catalyzed by 0.02 equivalent of RuCl3, leading to the formations of syn-aryl glycol monoesters. As the reaction is concerted, both the regio- and stereoselectivity are excellent. In the presence of aliphatic C=C bonds, the aryl C=C bonds were selectively dioxygenated. This represents the first example of chemoselective dioxygenation of aryl C=C bonds.
Key words
synthetic methods - oxidation - glycol monoesters - olefins - hydrogen peroxide
- Supporting Information for this article is available online:
- Supporting Information
-
1a
El-Zayat AAE.Ferrigni NR.McCloud TG.McKenzie AT.Byrn SR.Cassady JM.Chang C.McLaughlin JL. Tetrahedron Lett. 1985, 26: 955 -
1b
Mukai C.Yamashita H.Hirai S.Hanaoka M.McLaughlin JL. Chem. Pharm. Bull. 1999, 47: 131 -
1c
Blazquez MA.Bermejjo A.Zafra-Polo MC.Cortes D. Phytochem. Anal. 1999, 10: 161 -
1d
Mereyala HB.Joe M. Curr. Med. Chem. Anti-Cancer Agents 2001, 1: 293 -
1e
Yan D.Chen H.Xu X.Cheng M.Wang H.Li A.Shi L. Chinese J. Struct. Chem. 2004, 23: 571 -
1f
Tuchida P.Munyoo B.Pohmakotr M.Thinapong P.Sophasan S.Santisuk T.Reutrakul V. J. Nat. Prod. 2006, 69: 1728 -
2a
Min H.Park E.Hong J.Kang Y.Kim S.Chung H.Woo E.Hung T.Youn UJ.Kim YS.Kang SS.Bae K.Lee SK. Bioorg. Med. Chem. 2008, 18: 523 ; and references cited therein -
2b
Shen Y.Lin Y.Cheng Y.Chiang MY.Liou S.Khalil AT. Phytochemistry 2009, 70: 114 -
3a
Woodward RB.Brutcher FV. J. Am. Chem. Soc. 1958, 80: 209 -
3b
Li Y.Song D.Dong VM. J. Am. Chem. Soc. 2008, 130: 2962 -
4a
Kolb HC.VanNiewenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
4b
Shing TKM.Tai VW.Tam EKW. Angew. Chem., Int. Ed. Engl. 1994, 33: 2312 -
4c
Plietker B.Niggemann M. Org. Lett. 2003, 5: 3353 -
4d
Santoro S.Santi C.Sabatini M.Testaferri L.Tiecco M. Adv. Synth. Catal. 2008, 350: 2881 ; and references cited therein - 5
Yang Z.Zhou W. J. Chem. Soc., Chem. Commun. 1995, 743 - 6
Deubel DV.Frenking G. Acc. Chem. Res. 2003, 36: 645 -
7a
Higuchi T.Ohtake H.Hirobe M. Tetrahedron Lett. 1989, 30: 6545 -
7b
Ohtake H.Higuchi T.Hirobe M. Tetrahedron Lett. 1992, 33: 2521 -
7c
Groves JT.Quinn R. J. Am. Chem. Soc. 1985, 107: 5790 -
7d
Groves JT.Bonchio M.Carofilio T.Shalyaev T. J. Am. Chem. Soc. 1996, 118: 8961 -
7e
Murahashi S.Komiya N. In Modern Oxidation MethodsBäckvall J. Wiley-VCH; Weinheim: 2004. p.165 - 8
Murahashi S.Saito T.Hanaoka H.Murakami Y.Naota T.Kumobayashi H.Akutagawa S. J. Org. Chem. 1993, 58: 2929 -
9a
Vedejs E.Daugulis O.Diver ST. J. Org. Chem. 1996, 61: 430 -
9b
Naemura K.Miyabe H.Shingai Y.
J. Chem. Soc., Perkin Trans. 1 1991, 957 -
9c
Naemura K.Murata M.Tanaka R.Yano M.Hirose K.Tobe Y. Tetrahedron: Asymmetry 1996, 7: 3285 -
9d
Morimoto T.Hirano M.Koyama T. J. Chem. Soc., Perkin Trans. 2 1985, 1109 - 10
Iida H.Tanaka M.Kibayashi C. J. Org. Chem. 1984, 49: 1909 -
11a
Volkmann RA.Weeks PD.Kuhla DE.Whipple EB.Chmurny GN. J. Org. Chem. 1977, 42: 3976 -
11b
Wender PA.McDonald FE. J. Am. Chem. Soc. 1990, 112: 4956 -
11c
Rumbo A.Castedo L.Mourino A.Mascarenas JL. J. Org. Chem. 1993, 58: 5585 -
11d
Rodríguez JR.Rumbo A.Castedo L.Mascarenas JL. J. Org. Chem. 1999, 64: 4560
References and Notes
General Procedure
for the Oxidation of Aryl Olefins
To a solution of
olefin (1 mmol) and RuCl3˙nH2O (0.02 mmol)
in AcOH (20 mL) was added H2O2 (30%,
2 mmol) in AcOH (5 mL) dropwisely at r.t. When all H2O2 was
added in 15 min, the reaction was completed as checked by TLC. The reaction
mixture was diluted with H2O (100 mL), and extracted
with EtOAc (3 × 30 mL). The organic layers
were combined, neutralized with aq NaHCO3 (3 × 30
mL), washed with brine (3 × 30 mL), dried
over anhyd Na2SO4, and concentrated in vacuum
to give the crude product which was purified by flash chromatography
on silica gel to afford the corresponding product, the aryl glycol
monoester (for details: Table
[¹]
and
Supporting Information). Spectroscopic Data
for a Product (Entry 27, Table 1)
White solid (mp
248-250 ˚C); yield 50%. IR (KBr): ν = 3436,
2935, 2814, 1731, 1675, 1546, 1218, 1034 cm-¹. ¹H NMR
(500 MHz, DMSO-d
6): δ = 7.34-7.04
(m, 12 H), 6.18 (m, 2 H), 6.14 (d, J = 5.5
Hz, 1 H), 5.79 (d, J = 6.5
Hz, 1 H), 5.33 (d, J = 4.9
Hz, 1 H), 4.01 (dd, J = 7.0,
14.1 Hz, 1 H), 3.46 (m, 2 H), 3.30 (m, 2 H), 2.22 (s, 3 H), 2.00
(s, 3 H), 1.56 (m, 2 H) ppm. ¹³C NMR
(125 MHz, DMSO-d
6): δ = 177.16, 177.14,
170.65, 137.57, 136.67, 136.11, 135.20, 134.26, 129.48, 129.32,
128.83, 128.54, 127.37, 127.01, 126.76, 126.14, 71.70, 62.55, 60.47,
52.41, 46.12, 45.50, 21.41, 21.25 ppm. ESI-MS: m/z = 585.2 [M + Na]+.
ESI-HRMS:
m/z calcd
for C34H30N2O6 + Na [M + Na]+:
585.2001; found: 585.2009.