Subscribe to RSS
DOI: 10.1055/s-0029-1219554
Synthesis of Two Nuphar Alkaloids by Allenic Hydroxylamine Cyclisation
Publication History
Publication Date:
26 February 2010 (online)
Abstract
A highly diastereoselective silver-catalysed cyclisation of a 2-substituted β-allenic hydroxylamine is reported. The resulting trans-isoxazolidine is converted into two Nuphar alkaloids by a sequence involving cross-metathesis and intramolecular reductive amination.
Key words
piperidines - allenes - cyclisation - silver - alkaloids
-
1a
Arata Y.Ohahshi T. Yakagaku Zasshi 1957, 77: 792 -
1b
Maurer B.Ohloff G. Helv. Chim. Acta 1976, 59: 1169 -
2a
Lalonde RT.Muhammad N.Wong CF.Sturiale ER. J. Org. Chem. 1980, 45: 3664 -
2b
Ohnuma T.Tabe M.Shiiya K.Ban Y. Tetrahedron Lett. 1983, 24: 4249 -
2c
Tufariello JJ.Dyszlewski AD. J. Chem. Soc., Chem. Commun. 1987, 1138 -
2d
Shimizu I.Yamazaki H. Chem. Lett. 1990, 777 -
2e
Clive DJL.Bergstra RJ. J. Org. Chem. 1991, 56: 4976 -
2f
Aoyagi S.Shishido Y.Kibayashi C. Tetrahedron Lett. 1991, 32: 4325 -
2g
Honda T.Ishikawa F.Yamane S. J. Chem. Soc., Chem. Commun. 1994, 499 -
2h
Honda T.Ishikawa F.Yamane S. Heterocycles 1999, 52: 313 -
2i
Barluenga J.Aznar F.Ribas C.Valdés C. J. Org. Chem. 1999, 64: 3736 -
2j
Gebauer J.Blechert S. Synlett 2005, 2826 -
2k
Davis F.Santhanaraman M. J. Org. Chem. 2006, 71: 4222 -
2l
Stoye A.Quandt G.Brunnhöfer B.Kapatsina E.Baron J.Fischer A.Weymann M.Kunz H. Angew. Chem. Int. Ed. 2009, 48: 2228 -
3a
Bates RW.Satchareon V. Chem. Soc. Rev. 2002, 12 - For a review of silver in heterocycle synthesis, see:
-
3b
Álvarez-Corral M.Muñoz-Dorado M.Rodríguez-García I. Chem. Rev. 2008, 108: 3174 - 4
Bates RW.Nemeth J.Snell RH. Synthesis 2008, 1033 - 5
Bates RW.Lu Y. J. Org. Chem. 2009, 74: 9460 -
6a
Crandall JK.Tindell GL. J. Chem. Soc., Chem. Commun. 1970, 1412 -
6b
Konegawa T.Ohtsuka Y.Ikeda H.Sugai T.Ohta H. Synlett 1997, 1297 -
6c
Ma S.Gao W. J. Org. Chem. 2002, 67: 6104 -
7a
Grochowski E.Jurczak J. Synthesis 1976, 682 -
7b
Iwagami H.Yatagai M.Nakazawa M.Orita H.Honda Y.Ohnuki T.Yukawa T. Bull. Chem. Soc. Jpn. 1991, 64: 175 - 9
Wabnitz TC.Yu J.-Q.Spencer JB. Chem. Eur. J. 2004, 10: 484 -
10a
Cicchi S.Got A.Brandi A.Guarna A.Sarlos FD. Tetrahedron Lett. 1990, 31: 3351 -
10b
Zhang D.Süling C.Miller MJ. J. Org. Chem. 1998, 63: 885 -
10c
Mulvihill MJ.Gage JL.Miller MJ. J. Org. Chem. 1998, 63: 3357 -
10d
Li F.Brogan JB.Gage JL.Zhang D.Miller MJ. J. Org. Chem. 2004, 69: 4538 -
10e
Yang Y.-K.Choi J.-H.Tae J. J. Org. Chem. 2005, 70: 6995 -
10f
Calvet G.Blanchard N.Kouklovsky C. Synthesis 2005, 3346 - 13
Sinisterra JV.Mouloungui Z.Delmas M.Gaset A. Synthesis 1985, 1097 - 14
Blanchette MA.Choy W.Davis JT.Essenfeld AP.Masamune S.Roush WR.Sakai T. Tetrahedron Lett. 1984, 25: 2183 - 15
Connon SJ.Blechert S. Angew. Chem. Int. Ed. 2003, 42: 1900 - 16
Bieniek M.Michrowska A.Usanov DL.Grela K. Chem. Eur. J. 2008, 14: 806 - 17
Hoye TR.Jeffrey CS.Tennakoon MA.Wang J.Zhao H. J. Am. Chem. Soc. 2004, 126: 10210
References and Notes
NMR spectroscopic data for the trans isomer: ¹H NMR (300 MHz, CDCl3): δ = 1.08 (3 H, d, J = 6.8 Hz, CH3), 1.45 (9 H, s, t-Bu), 2.39 (1 H, m, CH), 3.41 (1 H, t, J = 8.3 Hz, CH2), 3.93 (1 H, t, J = 6.9 Hz, CH), 4.10 (1 H, t, J = 7.2 Hz,CH2), 5.13 (1 H, J = 10.1 Hz, =CH), 5.22 (1 H, J = 17.0 Hz, =CH), 5.76 (1 H, ddd, J = 7.2, 10.2, 16.8 Hz, =CH). ¹³C NMR (75 MHz, CDCl3): δ = 14.5, 28.2, 43.8, 69.1, 75.0, 81.8, 115.8, 136.7, 157.0.
11A suitable crystal was obtained from EtOAc-hexane. Empirical formula: C11H21NO3; formula weight: 215.29; temp: 173 (2) K; wavelength: 0.71073 Å; crystal system: monoclinic; space group: P2 (1)/n; unit cell dimensions: a = 11.1651 (4) Å, α = 90˚, b = 11.2768 (4) Å, β = 115.343 (2)˚, c = 11.1785 (5) Å, γ = 90˚; volume: 1272.00(9) ų; Z: 4; density(calcd): 1.124 Mg/m³; absorption coefficient: 0.081 mm-¹; F(000): 472; crystal size: 0.30 × 0.30 × 0.14 mm³; θ range for data collection: 2.16-27.67˚; index ranges: -14 ≤ h ≤ 14, -12 ≤ k ≤ 14, -14 ≤ l ≤ 14; reflections collected: 12787; independent reflections: 2983 [R(int) = 0.0586]; completeness to θ = 27.67˚: 99.9%; absorption correction; semi-empirical from equivalents; max. and min. transmission: 0.9888 and 0.9762; refinement method: full-matrix least-squares on F ²; data/restraints/parameters: 2983/0/144; goodness-of-fit on F ²; 1.067; final R indices [I > 2σ(I)]R1 = 0.0652, wR2 = 0.1952; R indices (all data); R1 = 0.1041, wR2 = 0.2283; largest diff. peak and hole; 0.425 and -0.298 e Å-³. Details have been deposited with the Cambridge Crystallographic Data Centre, CCDC 764203, and may be obtained at http://www.ccdc.cam.ac.uk.
12Diethyl methylphosphonate (8.71
g, 57.3 mmole) in THF (30 mL) and added via cannula to a solution
of n-BuLi (48 mL of a 1.6 M solution
in hexane, 71.6 mmol) in THF (50 mL) at -78 ˚C.
A solution of the Weinreb amide of 3-furoic acid (6.64 g, 47.7 mmol)
in THF (20 mL) and added via cannula to the mixture. The mixture
was stirred for 2 h. 2 M HCl was added to the mixture, and it was
extracted twice with Et2O. The combined organic layers
were dried (MgSO4), and concentrated to give phosphonate 8 as a brown oil (15 g, 1.29 mmol, 72%),
which was used without purification. ¹H NMR
(300 MHz, CDCl3): δ = 1.30 (t, J = 7.05 Hz,
6 H, CH3), 3.39 (d, J = 22.7
Hz, 2 H, PCH2), 4.14 (m, 4 H, CH2), 6.80 (t, J = 1.2 Hz,
1 H, CH), 7.43 (s, 1 H, CH), 8.16 (s, 1 H, CH). ¹³C
NMR (100 MHz, CDCl3):
δ = 16.2
(d, J = 5.7
Hz), 40.6 (d, J = 127.8
Hz), 62.7, 108.8, 127.7, 144.2, 149.1, 185.6 (d, J = 6.7
Hz).
NMR data for piperidine 12: ¹H NMR (400 MHz,
CDCl3):
δ = 0.89 (d, J = 6.4 Hz,
3 H), 1.10-1.30 (m, 3 H), 1.35-1.50 (1 H, m),
1.55-1.70 (1 H, m), 1.75-1.85 (2 H, m), 1.95-2.05 (1
H, m), 2.25-2.32 (1 H, m), 2.40-2.45 (2 H, m),
3.57 (m, 1 H), 3.65 (s, 3 H), 6.37 (s, 1 H), 7.33 (m, 2 H). ¹³C
NMR (100 MHz, CDCl3): δ = 18.4, 28.6,
30.2, 33.9, 34.1, 35.5, 51.5, 53.2, 62.3, 109.1, 129.5, 138.3, 142.7,
174.5.
Lactam 13 is also obtained if ester 12 is treated directly with methylmagnesium bromide.