RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219792
A Convenient Stereoselective Synthesis of trans-4a,5,8,8a-Tetrahydro-2H-isoquinolin-1-ones via trans 3-Allylation of 4-Allyl-3,4-dihydropyridine-2-thiones and RCM as Key Steps
Publikationsverlauf
Publikationsdatum:
25. März 2010 (online)
Abstract
A convenient synthesis of trans-4a,5,8,8a-tetrahydro-2H-isoquinolin-1-ones from 4-allyl-3,4-dihydro-1H-pyridine-2-thiones via stereoselective alkylation at C-3 (trans with respect to 4-allyl substituent), subsequent N-alkylation (optionally for NH derivatives) followed by ring-closing metathesis (RCM) of corresponding trans-3,4-diallyl-3,4-dihydro-1H-pyridine-2-ones is described. The high synthetic potential of the obtained bicyclic piperidinones, exemplified by the synthesis of threecyclic [1,3]oxazino[3,2-b]isoquinolin-6-one via N-acyliminum cation, is presented.
Key words
4a,5,8,8a-tetrahydro-2H-isoquinolin-1-ones - stereoselective trans-alkylation - δ-(thio)lactams - N-acyliminum cation - RCM
- Supporting Information for this article is available online:
- Supporting Information
- 1
Rubiralta M.Giralt E.Diez A. Piperidines. Structure, Preparation, Reactivity and Synthetic Application of Piperidines and its Derivatives Elsevier; Amsterdam: 1991. - For selected examples, see:
-
2a
Vuckovic S.Prostran M.Ivanovic M.Dosen-Micovic Lj.Todorovic Z.Nesic Z.Stojanovic R.Divac N.Mikovic Z. Curr. Med. Chem. 2009, 16: 2468 -
2b
Kaellstroem S.Leino R. Bioorg. Med. Chem. 2008, 16: 601 -
2c
Carroll FI.Chaudhari S.Thomas JB.Mascarella SW.Gigstad KM.Deschamps J.Navarro HA. J. Med. Chem. 2005, 48: 8182 -
2d
Leung D.Abbenante G.Fairlie DP. J. Med. Chem. 2000, 43: 305 -
2e
Vacher B.Bonnaud B.Funes P.Jubault N.Koek W.Assie MB.Cosi C.Kleven M. J. Med. Chem. 1999, 42: 1648 -
2f
Webber RK.Metz S.Moore WM.Connor JR.Currie MG.Fok KF.Hagen TJ.Hansen DW.Jerome GM.Manning PT.Pitzele BS.Toth MV.Trivedi M.Zupec ME.Tjoeng FS. J. Med. Chem. 1998, 41: 96 -
2g
Babine RE.Bender SL. Chem. Rev. 1997, 97: 1359 - For recent reviews on synthesis of functionalized piperidines, see:
-
3a
De Risi C.Fanton G.Pollini GP.Trapella C.Valente F.Zanirato V. Tetrahedron: Asymmetry 2008, 19: 131 -
3b
Koulocheri SD.Pitsinos EN.Haroutounian SA. Curr. Org. Chem. 2008, 12: 1454 -
3c
Remuson R.Gelas-Mialhe Y. Mini-Rev. Org. Chem. 2008, 5: 193 -
3d
Escolano C.Amat M.Bosch J. Chem. Eur. J. 2006, 12: 8198 -
3e
Pearson MSM.Mathé-Allainmat M.Fargeas V.Lebreton J. Eur. J. Org. Chem. 2005, 2159 -
3f
Cossy J. Chem. Rec. 2005, 5: 70 -
3g
Buffat MGP. Tetrahedron 2004, 60: 1701 -
3h
Weintraub PM.Sabol JS.Kane JM.Borcherding DR. Tetrahedron 2003, 59: 2953 -
3i
Bates R.Sa-Ei K. Tetrahedron 2002, 58: 5957 -
3j
Laschat S.Dickner T. Synthesis 2000, 1781 - 4
Jagodziński TS. Chem. Rev. 2003, 103: 197 - 5 See, for example:
Bélanger G.Larouche-Gauthier R.Ménard F.Nantel M.Barabé F. Org. Lett. 2005, 7: 4431 - 6
Sośnicki JG. Synlett 2003, 1673 -
7a
Sośnicki JG. Tetrahedron Lett. 2006, 47: 6809 -
7b
Sośnicki JG. Synlett 2009, 2508 - 8
Sośnicki JG. Tetrahedron 2007, 63: 11862 - 9
Sośnicki JG.Struk Ł. Synlett 2009, 1812 - 10
The
Alkaloids
Vol. 27:
Szántay C.Blaskó G.Honty K.Dornyei G.Brossi A. Academic Press; New York: 1986. p.131 - 11
Atta-ur-Rahman .Akhtar MN.Choudhary MI.Tsuda Y.Sener B.Khalid A.Parvez M. Chem. Pharm. Bull. 2002, 50: 1013 - 12
Andersen D.Storz T.Liu P.Wang X.Li L.Fan P.Chen X.Allgeier A.Burgos A.Tedrow J.Baum J.Chen Y.Crockett R.Huang L.Syed R.Larsen RD.Martinelli M. J. Org. Chem. 2007, 72: 9648 -
13a
Amat M.Brunaccini E.Checa B.Pérez M.Llor N.Bosch J. Org. Lett. 2009, 11: 4370 -
13b
Wache N.Christoffers J. Synlett 2009, 3016 -
13c
Allin SM.Duffy LJ.Towler JMR.Bulman PC.Elsegood MRJ.Saha B. Tetrahedron 2009, 63: 10230 -
13d
Korapala CS.Qin J.Friestad GK. Org. Lett. 2007, 9: 4243 -
13e
Lei Y.Wrobleski AD.Golden JE.Powell DR.Aube J.
J. Am. Chem. Soc. 2005, 127: 4552 -
13f
MaGee DI.Lee ML. Tetrahedron Lett. 2001, 42: 7177 -
13g
Liras S.Allen MP.Blake JF. Org. Lett. 2001, 3: 3483 -
13h
Overman LE.Kamatani A. Org. Lett. 2001, 3: 1229 -
13i
Dennison PR.Gibson A.Gray AI.Patrick GL. J. Chem. Soc., Perkin Trans. 1 1997, 721 -
13j
Patrick GL. J. Chem. Soc., Perkin Trans. 1 1995, 1273 -
13k
Aubé J.Ghosh S.Tanol M. J. Am. Chem. Soc. 1994, 116: 9009 -
13l
Wilson SR.Di Grandi MJ. J. Org. Chem. 1991, 56: 4766 -
14a
Song D.Rostami A.West FG. J. Am. Chem. Soc. 2007, 129: 12019 -
14b
Hua DH.Bharathi SN.Panangadan JAK.Tsujimoto A. J. Org. Chem. 1991, 56: 6998 -
14c
Back TG.Brunner K. J. Org. Chem. 1989, 54: 1904 - 15
Takahata H.Suzuki T.Yamazaki T. Heterocycles 1986, 24: 1247 -
16a
Takahata H.Suzuki T.Maruyama M.Moriyama K.Mozumi M.Takamatsu T.Yamazaki T. Tetrahedron 1988, 44: 4777 -
16b
Takahata H.Suzuki T.Yamazaki T. Heterocycles 1985, 23: 2213 - 17
Typical Procedure
for the Synthesis of (3
RS
,4
SR
)-3,4-Diallyl-substituted 3,4-Dihydropyridine-2-thiones
3a-j
To a cooled (-2 ˚C
to 0 ˚C) and stirred solution of 2 (3.2 mmol)
in dry THF (40 mL) a portion of 3.36 mmol (in the case of NR thiolactams 2c-f)
or 6.56 mmol (in the case of NH derivatives 2a,b) of n-BuLi
(2.5 M solution in hexane) was added via syringe under argon, and
the solution was stirred for 30 min. Subsequently, 3.42 mmol of
allyl bromide or its corresponding derivative was added via syringe.
The resulting solution was stirred for 20-30 min at 0 ˚C.
After addition of aq sat. NH4Cl (15 mL), the water layer
was extracted with EtOAc (2 × 100 mL),
and the combined organic layers were dried over MgSO4.
Filtration, concentration in vacuo, and purification by flash column chromatography
(silica gel, n-hexane-EtOAc = 7:3
or 8:2) yielded 3a-j as
a yellow solids or oils.
Selected Spectroscopic
Data
(3
RS
,4
SR
)-4-Allyl-3-(2-methylallyl)-3,4-dihydro-1
H
-pyridine-2-thione (3b)
Yellow oil. IR (film): ν = 3204
(br), 3140 (br), 3076, 2976, 2920, 1642, 1528, 1492, 1374, 1330,
1140, 1028, 992, 918, 894, 746, 728 cm-¹.
MS (EI, 70eV): m/z (%) = 207
(<1) [M+], 166 (100),
112 (26), 111 (16), 67 (11), 55 (13). ¹H NMR
(400.1 MHz, CDCl3): δ = 1.74
(3 H, s, CH3), 1.96-2.06 (1 H, m, 4-CHH), 2.10-2.30
(3 H, m, 4-CHH, 3-CHH, CH-4), 2.35 (1 H, dd, J = 13.4,
4.4 Hz, 3-CHH), 3.10 (1 H, dd, J = 11.4,
4.3 Hz, CH-3), 4.69 (1 H, br s, =CHH), 4.84 (1 H, br s, =CHH),
5.03-5.10 (2 H, m, =CH2), 5.35-5.41
(1 H, m, =CH-5), 5.62-5.74 (1 H, m, =CH),
6.07 (1 H, dd, J = 7.6, 4.4
Hz, =CH-6), 9.31 (1 H, br s, NH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 21.6
(CH3), 32.6 (CH-4), 38.0 (4-CH2), 40.7 (3-CH2),
50.0 (CH-3), 112.2 (=CH-5), 113.9, 117.8 (2 × =CH2), 122.9
(=CH-6), 134.5 (=CH), 142.0 (=CCH3), 203.9 (C=S). Anal.
Calcd for C12H17NS: C, 69.51; H, 8.26; N,
6.76; S, 15.47. Found: C, 69.44; H, 8.31; N, 6.77; 15.55.
- 18
Typical Procedure
for the Synthesis of N-Substituted δ-Lactams
5f-h from NH δ-Thiolactams 3a-c
To
a stirred mixture of 3a-c (1.77 mmol) and DBU (27.3 mg, 0.18 mmol)
in MeCN (5 mL) a portion of ethyl acrylate (0.25 mL, 2.3 mmol) was
added. The mixture was stirred for 1-1.5 h (TLC control)
at r.t. After addition of aq sat. NH4Cl (5 mL), the solution
was extracted with EtOAc (2 × 80 mL), and
the combined organic layers were dried over MgSO4. Filtration,
concentration in vacuo, and purification by column chromatography
(silica gel, n-hexane-EtOAc = 8:2 to
7:3) afforded 3k-m as
oils.To a solution of δ-thiolactam 3 (1.42 mmol) in acetone (20.5 mL) and
H2O (2 mL), NaHCO3 (0.54g, 6.4 mmol) was added at
0-2 ˚C. To a stirred and still cooled
suspension Oxone® (215 mg, 0.7 mmol) was added.
After 15 min of stirring the next 5 portions of Oxone® (107
mg, 0.35 mmol were added at 15 min intervals. After addition of
the last portion of Oxone® the solution was
stirred for additional 30 min at 0-2 ˚C,
cold H2O (20 mL) was added, and the solution was stirred
for additional 30 min at 0 ˚C and warmed to r.t.
(30 min) The solution was extracted with EtOAc (3 × 50
mL). The organic phase separated was dried (MgSO4), filtered, and
concentrated in vacuo. The crude product was purified by column
chromatography on silica gel.
Selected Spectroscopic Data
3-[(3
RS
,4
SR
)-4-Allyl-3-(2-methylallyl)-2-oxo-3,4-dihydro-2
H
-pyridin-1-yl]-propionic
Acid Ethyl Ester (5g)
Colorless
oil. IR (film): ν = 3076, 2980,
2940, 1736, 1664, 1448, 1390 (br), 1184 (br), 1020, 894, 720 cm-¹.
MS (EI, 70eV): m/z = 291
(14) [M+], 290 (13), 250 (85),
246 (24), 235 (14), 204 (35), 162 (37), 155 (15), 150 (100), 134
(16), 122 (15), 109 (11), 96 (24), 73 (12), 55 (71). ¹H
NMR (400.1 MHz, CDCl3): δ = 1.26
(3 H, t, J = 7.2
Hz, CH2CH
3), 1.72
(3 H, br s, CH3), 1.97-2.14 (2 H, m, 4-CH2),
2.15-2.30 (3 H, m, 3-CH2, CH-4), 2.52-2.62
(3 H, m, CH-3, COCH2), 3.66 (1 H, dt, J = 13.8,
6.6 Hz, NCHH), 3.77 (1 H, dt, J = 13.8,
6.7 Hz, NCHH), 4.14 (2 H, quart, J = 7.2 Hz,
OCH2), 4.66 (1 H, br s, =CHH),
4.98-5.08 (3 H, m, =CH2, =CH-5), 4.80
(1 H, br s, =CHH), 5.62-5.74
(1 H, m, =CH), 6.07 (1 H, d, J = 7.7 Hz, =CH-6). ¹³C
NMR (100.6 MHz, CDCl3): δ = 14.19 (CH2
CH3), 21.72 (CH3),
33.41 (COCH2), 34.96 (CH-4), 38.44 (4-CH2),
38.77 (3-CH2), 42.97 (NCH2), 43.92 (CH-3), 60.69
(OCH2), 107.59 (=CH-5), 113.30, 117.39 (2 × =CH2), 128.88
(=CH-6), 135.00 (=CH), 142.38 (=CCH3), 171.28, 171.75 (2 × C=O).
Anal. Calcd for C17H25NO3: C, 70.07;
H, 8.65; N, 4.81. Found: C, 69.99; H, 8.61; N, 4.89.
- 19
Nowaczyk S.Alayrac C.Reboul V.Metzner P.Averbuch-Pouchot M.-T. J. Org. Chem. 2001, 66: 7841 - 20
Barluenga J.Jardon J.Gotor V. Synthesis 1988, 146 - 21
Typical Synthesis
of (4a
RS
,8a
SR
)-4a,5,8,8a-tetrahydro-2
H
-isoquinolin-1-ones
(6a-i,j,l)
To a solution of 3,4-diallyl substituted δ-lactam 5 (0.65 mmol) in dry, degassed toluene
(7 mL) ruthenium catalyst 7 was added (Table
2), and the reaction mixture was vigorously stirred under slowly
passing stream of argon at 70 ˚C. After the reaction
was complete (Table 2), toluene was evaporated at reduced pressure,
and the residue was left standing for 48 h followed by purification
on column chromatography.
Selected
Spectroscopic Data
3-[(4a
SR
,8a
RS
)-7-Methyl-1-oxo-4a,5,8,8a-tetrahydro-1
H
-isoquinolin-2-yl]-propionic
Acid Ethyl Ester (6g)
Colorless
oil. IR (film): ν = 2964, 2912,
2840, 1734, 1666, 1446, 1392, 1296, 1266, 1184, 1054, 790 cm-¹.
MS (EI, 70eV): m/z (%) = 263
(100) [M+], 234 (32), 218
(27), 195 (38), 176 (26), 162 (33), 148 (19), 146 (23), 132 (14),
123 (22), 105 (14), 95 (35), 91 (25), 80 (19), 67 (14), 55 (26),
41 (10), 29 (23). ¹H NMR (400.1 MHz, CDCl3): δ = 1.25
(3 H, t, J = 7.1
Hz, CH2CH
3), 1.70
(3 H, br s, 7-CH3), 1.90-2.01 (1 H, m, CHH), 2.08-2.46 (5 H, m, CHH, CH2, CH-8a, CH-4a), 2.54-2.68
(2 H, m, COCH2), 3.67 (1 H, dt, J = 13.8,
6.7 Hz, NCHH), 3.81 (1 H, dt, J = 13.8,
6.8 Hz, NCHH), 4.14 (2 H, quart, J = 7.1 Hz,
OCH2), 4.97 (1 H, br d, J = ca.
7.7 Hz, =CH-4), 5.36 (1 H, br s, =CH-6), 6.09
(1 H, dd, J = 7.7,
2.7 Hz, =CH-3). ¹³C NMR (100.6
MHz, CDCl3): δ = 14.2
(CH3), 23.4 (7-CH3), 31.0 (CH2-5),
31.6 (CH2-8), 32.6 (CH-4a), 33.5 (COCH2),
41.7 (CH-8a), 42.9 (NCH2), 60.7 (OCH2), 111.2
(=CH-4), 119.4 (=CH-6), 129.1 (=CH-3),
133.8 (=C-7), 171.5, 171.8 (2 × C=O).
HRMS (EI): m/z calcd for C15H21NO3:
263.1521; found: 263.1521.
-
22a
Yazici A.Pyne SG. Synthesis 2009, 339 -
22b
Huang P.-Q. Synlett 2006, 1133 -
22c
Petrini M. Chem. Rev. 2005, 105: 3949 -
22d
Speckamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 - 23
Haasnoot CAG.DeLeeuw FAAM.Altona A. Tetrahedron 1980, 36: 2783
References and Notes
MM2 calculations were performed using the HyperChem program (7.52 release).