Synlett 2010(8): 1143-1169  
DOI: 10.1055/s-0029-1219820
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Phosphonium- and Benzotriazolyloxy-Mediated Bond-Forming Reactions and Their Synthetic Applications

Tarek S. Mansoura, Sujata Bardhana, Zhao-Kui Wan*b
a Department of Chemistry, PharmaTherapeutics, Pfizer Inc., 401 Middletown Road, Pearl River, NY 10965, USA
b Department of Chemistry, PharmaTherapeutics, Pfizer Inc., 200 Cambridge Park Drive, Cambridge, MA 02140, USA
Fax: +1(617)6655682; e-Mail: Zhao-Kui.Wan@pfizer.com;
Further Information

Publication History

Received 23 October 2009
Publication Date:
15 April 2010 (online)

Abstract

Phosphonium and benzotriazolyloxy (and related) intermediates are easily prepared by the reactions of cyclic amides and ureas with (1H-benzotriazol-1-yloxy)triaminophosphonium hexafluorophosphate related reagents. The former intermediates could also be made available using analogous phosphonium reagents prepared in situ or from commercial sources. These intermediates efficiently lead to carbon-nitrogen, carbon-oxygen, carbon-sulfur, and carbon-carbon bond formations through nucleophilic aromatic substitution reactions with various nucleophiles. A new ­reaction involving the generation of phenols in situ from arylboronic acids and oxygen under palladium(0) catalysis or with boronic acids and hydrogen peroxide is reviewed.

1 Introduction

2 Phosphonium-Mediated Nucleophilic Aromatic Substitution Reactions of Heterocyclic Systems

2.1 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions via Modified Appel Conditions

2.2 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions via Commercially Available Phosphonium Reagents

2.2.1 (1H-Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium Hexafluorophosphate as an Activating Agent

2.2.2 (1H-Benzotriazol-1-yloxy)tripyrrolidinylphosphonium Hexafluorophosphate and Bromotripyrrolidinylphosphonium Hexafluorophosphate as Activating Agents

2.2.3 Solvent and Base Effects

2.3 Reactivity of Various Phosphonium Reagents

2.4 Phosphonium-Mediated Carbon-Oxygen, Carbon-Sulfur, and Carbon-Carbon Bond Forming Reactions

3 Benzotriazolyloxy-Mediated and Related Bond-Forming Reactions of Heterocyclic Systems

4 Phosphonium-Mediated Reaction Mechanisms

4.1 Stepwise Pathways via Phosphonium and 1H-Benzotriazol-1-ol (or Pyridotriazol-1-ol) Adducts

4.2 1H-Benzotriazol-1-ol (or Pyridotriazol-1-ol) Adduct Independent Pathway

5 Palladium-Catalyzed Heteroaryl Ether Formation from Benzotriazolyloxy- or Pyridotriazolyloxy-Substituted Heterocycles with Arylboronic Acids

6 Unusual 1H-Benzotriazol-1-ol Adduct Rearrangement

7 A Tentative Protection and Amination Strategy Involving a 1H-Benzotriazol-1-ol Adduct

8 Conclusion and Outlook

    References

  • For representative examples, see:
  • 1a Suhadolnik RJ. Nucleosides as Biological Probes   Wiley; New York: 1979. 
  • 1b Srivastava PC. Robins RK. Meyer RB. In Chemistry of Nucleosides and Nucleotides   Vol. 1:  Townsend LB. Plenum; New York: 1988.  p.113-281  
  • 1c Han S. Harris CM. Harris TM. Kim H.-YH. Kim SJ. J. Org. Chem.  1996,  61:  174 
  • 1d Simons C. Wu Q. Htar TT. Curr. Top. Med. Chem.  2005,  5:  1191 ; and references cited therein
  • 2 For recent syntheses, see: Yoon DS. Han Y. Stark TM. Haber JC. Gregg BT. Stankovich SB. Org. Lett.  2004,  6:  4775 ; and references cited therein
  • For representative reviews on the pharmaceutical and clinical applications of quinazolinamines, see:
  • 3a Fry DW. Kraker AJ. McMichael A. Ambroso LA. Nelson JM. Leopold WR. Connors RW. Bridges AJ. Science (Washington, DC, U.S.)  1994,  265:  1093 
  • 3b Bridges AJ. Chem. Rev.  2001,  101:  2541 
  • 3c Liao JJ.-L. J. Med. Chem.  2007,  50:  409 
  • For the role of guanidines and amidines in chiral catalysis, see:
  • 3d Corey EJ. Grogan MJ. Org. Lett.  1999,  1:  157 
  • 3e Weiss ME. Fischer DF. Xin Z.-q. Jautze S. Schweizer WB. Peters R. Angew. Chem. Int. Ed.  2006,  45:  5694 
  • 3f Shen J. Nguyen TT. Goh Y.-P. Ye W. Fu X. Xu J. Tan C.-H. J. Am. Chem. Soc.  2006,  128:  13692 
  • 3g Jautze S. Seiler P. Peters R. Angew. Chem. Int. Ed.  2007,  46:  1260 
  • 3h Fischer DF. Xin Z.-q. Peters R. Angew. Chem. Int. Ed.  2007,  46:  7704 
  • For a few representative examples, see:
  • 4a Maruenda H. Chenna A. Liem L.-K. Singer B. J. Org. Chem.  1998,  63:  4385 
  • 4b Van Brocklin HF. Lim JK. Coffing SL. Hom DL. Negash K. Ono MY. Gilmore JL. Bryant I. Riese DJII. J. Med. Chem.  2005,  48:  7445 
  • 4c Wissner A. Floyd MB. Johnson BD. Fraser H. Ingalls C. Nittoli T. Dushin RG. Discafani C. Nilakantan R. Marini J. Ravi M. Cheung K. Tan X. Musto S. Annable T. Siegel MM. Loganzo F. J. Med. Chem.  2005,  48:  7560 
  • 4d Mishani E. Abourbeh G. Jacobson O. Dissoki S. Daniel RB. Rozen Y. Shaul M. Levitzki A. J. Med. Chem.  2005,  48:  5337 
  • 4e Domarkas J. Dudouit F. Williams C. Qiyu Q. Banerjee R. Brahimi F. Jean-Claude BJ. J. Med. Chem.  2006,  49:  3544 
  • For general Buchwald-Hartwig aminations, see:
  • 5a Wagaw S. Buchwald SL. J. Org. Chem.  1996,  61:  7240 
  • 5b Old DW. Wolfe JP. Buchwald SL. J. Am. Chem. Soc.  1998,  120:  9722 
  • 5c Wolfe JP. Wagaw S. Marcoux J.-F. Buchwald SL. Acc. Chem. Res.  1998,  31:  805 
  • 5d Hartwig JF. Angew. Chem. Int. Ed.  1998,  37:  2046 
  • 5e Hartwig JF. Acc. Chem. Res.  1998,  31:  852 
  • 6a Castro B. Dormoy JR. Evin G. Selve C. Tetrahedron Lett.  1975,  16:  1219 
  • 6b Coste J. Frérot E. Jouin P. J. Org. Chem.  1994,  59:  2437 
  • 6c Campagne J.-M. Coste J. Jouin P. J. Org. Chem.  1995,  60:  5214 
  • For ester formation, see:
  • 6d Kim MH. Patel DV. Tetrahedron Lett.  1994,  35:  5603 
  • 6e Coste J. Campagne J.-M. Tetrahedron Lett.  1995,  36:  4253 
  • 7a Castro B. Chapleur Y. Gross B. Selve C. Tetrahedron Lett.  1972,  13:  5001 
  • 7b Castro B. Selve C. Tetrahedron Lett.  1973,  14:  4459 
  • 7c

    See also ref. 6a

  • 7d Downie IM. Heaney H. Kemp G. Tetrahedron Lett.  1988,  44:  2619 
  • 7e

    See also ref. 6c; and references cited therein.

  • 8 Wan Z.-K. Binnun E. Wilson D. Lee J. Org. Lett.  2005,  7:  5877 
  • 9 Wan Z.-K. Wacharasindhu S. Binnun E. Mansour T. Org. Lett.  2006,  8:  2425 
  • 10 Wan Z.-K. Wacharasindhu S. Levins C. Lin M. Tabei K. Mansour TS. J. Org. Chem.  2007,  72:  10194 
  • 11 De Napoli L. Messere A. Montesarchio D. Piccialli G. Santacroce C. Nucleosides Nucleotides  1991,  10:  1719 
  • 12 De Napoli L. Messere A. Montesarchio D. Piccialli G. Santacroce C. Varra M. J. Chem. Soc., Perkin Trans. 1  1994,  923 
  • 13 Appel R. Angew. Chem. Int. Ed. Engl.  1975,  14:  801 
  • 14a Véliz EA. Beal PA. Tetrahedron Lett.  2000,  41:  1695 
  • The same methodology was also used for the bromination of 6-bromopurine ribonucleosides; see:
  • 14b Véliz EA. Beal PA. J. Org. Chem.  2001,  66:  8592 
  • 15 Hans JJ. Deriver RW. Burke SD. J. Org. Chem.  1999,  64:  1430 
  • 16 Bae S. Lakshman MK. J. Org. Chem.  2008,  73:  1311 
  • 17 Lin X. Robins MJ. Org. Lett.  2000,  2:  3497 
  • 18a Janeba Z. Lin X. Robins MJ. Nucleosides, Nucleotides Nucleic Acids  2004,  23:  137 
  • 18b Zhong M. Nowak I. Cannon JF. Robins MJ. J. Org. Chem.  2006,  71:  4216 
  • 18c Zhong M. Nowak I. Robins MJ. Org. Lett.  2005,  7:  4601 
  • 19 Wan Z.-K. Lee J. Hotchandani R. Moretto A. Binnun E. Wilson DP. Kirincich SJ. Follows BC. Ipek M. Xu W. Joseph-McCarthy D. Zhang Y.-L. Tam M. Erbe DV. Tobin JF. Li W. Tam SY. Mansour TS. Wu J. ChemMedChem  2008,  3:  1525 ; and references cited therein
  • For representative examples, see:
  • 21a Nair V. Richardson SG. J. Org. Chem.  1980,  45:  3969 
  • 21b

    See also ref. 1c

  • 21c Liu J. Janeba Z. Robins MJ. Org. Lett.  2004,  6:  2917 
  • For recent reviews, see:
  • 21d Lakshman MK.
    J. Organomet. Chem.  2002,  653:  234 
  • 21e Hocek M. Eur. J. Org. Chem.  2003,  245 
  • 22 Robins MJ. Basom GL. Can. J. Chem.  1973,  51:  3161 
  • 23a Lee H. Luna E. Hinz M. Stezowski JJ. Kiselyov AS. Harvey RG. J. Org. Chem.  1995,  60:  5604 
  • 23b Maruenda H. Chenna A. Liem L.-K. Singer B.
    J. Org. Chem.  1998,  63:  4385 
  • 23c Lakshman MK. Sayer JM. Jerina DM. J. Am. Chem. Soc.  1991,  113:  6589 
  • 23d Kim SJ. Harris CM. Jung K.-Y. Koreeda M. Harris TM. Tetrahedron Lett.  1991,  32:  6073 
  • 24a Lakshman MK. Keeler JC. Hilmer JH. Martin JQ. J. Am. Chem. Soc.  1999,  121:  6090 
  • 24b De Riccardis F. Bonala RR. Johnson F. J. Am. Chem. Soc.  1999,  121:  10453 
  • 24c Elmquist CE. Stover JS. Wang Z. Rizzo CJ. J. Am. Chem. Soc.  2004,  126:  11190 
  • 24d Dai Q. Ran C. Harvey RG. Org. Lett.  2005,  7:  999 
  • 25 Sung WL. J. Org. Chem.  1982,  47:  3623 
  • 26 Mansour TS. Evans CA. Siddiqui MA. Charron M. Zacharie B. Nguyen-Ba N. Lee N. Korba B. Nucleosides Nucleotides  1997,  16:  993 
  • 27a Harvey RG. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity   Cambridge University; Cambridge / UK: 1991. 
  • 27b Glatt H. Seidel A. Harvey RG. Coughtrie MWH. Mutagenesis  1994,  9:  553 
  • 28 Seela F. Herdering W. Kehne A. Helv. Chim. Acta  1987,  70:  1649 
  • 29 Printz M. Richert C. Chem. Eur. J.  2009,  15:  3390 
  • 30 Wu W. Stupi BP. Litosh VA. Mansouri D. Farley D. Morris S. Metzker S. Metzker ML. Nucleic Acids Res.  2007,  35:  6339 
  • 31 Sakkar S. Perlstein EO. Imarisio S. Pineau S. Cordenier A. Maglathlin RL. Webster JA. Lewis TA. O’Kane CJ. Schreiber SL. Rubinsztein DC. Nat. Chem. Biol.  2007,  3:  331 
  • 32 Peng Z.-H. Journet M. Humphrey G. Org. Lett.  2006,  8:  395 
  • Isolation:
  • 33a Miller CO. Skoog F. Von Saltza MH. Strong FM. J. Am. Chem. Soc.  1955,  77:  1392 
  • 33b Miller CO. Skoog F. Okumura FS. Von Saltza MH. Strong FM. J. Am. Chem. Soc.  1956,  78:  1375 
  • Syntheses, see:
  • 33c Villar JDF. Motta MA. Nucleosides, Nucleotides Nucleic Acids  2000,  19:  1005 
  • 33d

    See also ref. 33b

  • 34 Barciszewski J. Mielcarek M. Stobiecki M. Siboska G. Clark BFC. Biochem. Biophys. Res. Commun.  2000,  279:  69 
  • 35 For a recent review on kinetin, see: Barciszewski J. Rattan SIS. Siboska G. Clark BFC. Plant Sci.  1999,  148:  37 
  • For representative biological activities, see:
  • 36a Hartwell LH. Kastan MB. Science (Washington, DC, U.S.)  1994,  266:  1821 
  • For recent six- to nine-step syntheses, see:
  • 36b Nugiel DA. Cornelius LAM. Corbett JW. J. Org. Chem.  1997,  62:  201 
  • 36c Dorff PH. Garigipati RS. Tetrahedron Lett.  2001,  42:  2771 
  • 36d Hammarström LGJ. Smith DB. Talamás FX. Labadie SS. Krauss NE. Tetrahedron Lett.  2002,  43:  8071 
  • 37 Levins CG. Wan Z.-K. Org. Lett.  2008,  10:  1755 ; and references cited therein for conventional syntheses
  • 38a Madhavan R. Srinivasan VR. Indian J. Chem.  1969,  7:  760 
  • 38b Confalone PN. Woodward RB. J. Am. Chem. Soc.  1983,  105:  902 
  • 38c Deshmukh MB. Shelar MA. Mulik AR. Indian J. Heterocycl. Chem.  2000,  10:  13 
  • For the direct amination of oxadiazole-2-thiones, see:
  • 38d Laddi UV. Desai SR. Bennur RS. Bennur SC. Indian J. Heterocycl. Chem.  2002,  11:  319 
  • 38e Honnalli SS. Ronad PM. Vijaybhasker K. Jukkeri VI. Kumar R. Heterocycl. Commun.  2005,  11:  505 
  • 39a Smith AEW. Science (Washington, DC, U.S.)  1954,  119:  514 
  • 39b Stempel A. Zelauskas J. Aeschlimann JA. J. Org. Chem.  1955,  20:  412 
  • 39c Rosen GM. Popp FD. Gemmill FQ. J. Heterocycl. Chem.  1971,  8:  659 
  • 39d Thompson SK. Smith WW. Zhao B. Halbert SM. Tomaszek TA. Tew DG. Levy MA. Janson CA. D’Alessio KJ. McQueney MS. Kurdyla J. Jones CS. DesJarlais RL. Abdel-Meguid SS. Veber DF.
    J. Med. Chem.  1998,  41:  3923 
  • 40 Grzyb JA. Dekeyser MA. Batey RA. Synthesis  2005,  2384 
  • 41 Clemens JJ. Davis MD. Lynch KR. Macdonald TL. Bioorg. Med. Chem. Lett.  2004,  14:  4903 
  • 42 Anand NK. Blazey CM. Bowles OJ. Bussenius J. Canne Bannen L. Chan DS.-M. Chen B. Co EW. Costanzo S. Defina SC. Dubenko L. Franzini M. Huang P. Jammalamadaka V. Khoury RG. Kim MH. Klein RR. Le DT. Mac MB. Nuss JM. Parks JJ. Rice KD. Tsang T. Tsuhako AL. Wang Y. Xu W. WO 2005117909
  • 43 Pritz S. Wolf Y. Klemm C. Bienert M. Tetrahedron Lett.  2006,  47:  5893 
  • 44 Kang F.-A. Kodah J. Guan Q. Li X. Murray WV. J. Org. Chem.  2005,  70:  1957 
  • 45 Kang F.-A. Sui Z. Murray WV. Eur. J. Org. Chem.  2009,  461 
  • 46 Ashton TD. Scammells PJ. Aust. J. Chem.  2008,  61:  49 
  • For example, the amination of guanosine proceeded much better with DBU in acetonitrile:
  • 47a

    Wan, Z.-K.; Binnun, E. unpublished results.

  • 47b Lakshman MK. Frank J. Org. Biomol. Chem.  2009,  7:  2933 
  • 50 Ashton TD. Baker SP. Hutchinson SA. Scammells PJ. Bioorg. Med. Chem.  2008,  16:  1861 
  • 51 Bae S. Lakshman MK. J. Am. Chem. Soc.  2007,  129:  782 
  • 52 Xiao Z. Yang MG. Li P. Carter PH. Org. Lett.  2009,  11:  1421 
  • 53 Boge N. Kruger S. Schroder M. Meier C. Synthesis  2007,  3907 
  • 54 Rabisson P. Lenz O. Lin T.-I. Surleraux D. Chakravarty S. Scholliers A. Vermeiren K. Delouvroy F. Vervinnen T. Simmen K. Bioorg. Med. Chem. Lett.  2007,  17:  1843 
  • 55a Scicinski JJ. Congreve MS. Jamieson C. Ley SV. Newman ES. Vinader VM. Carr RAE. J. Comb. Chem.  2001,  2:  387 
  • 55b Hisamichi H. Naito R. Toyoshima A. Kawano N. Ichikawa A. Orita A. Orita M. Hamada N. Takeuchi M. Ohta M. Tsukamoto S.-i. Bioorg. Med. Chem.  2005,  13:  4936 
  • 55c Hisamichi H. Naito R. Toyoshima A. Kawano N. Ichikawa A. Orita A. Orita M. Hamada N. Takeuchi M. Ohta M. Tsukamoto S.-i. Bioorg. Med. Chem.  2005,  13:  6277 
  • 55d Reese CB. Richards KH. Tetrahedron Lett.  1985,  26:  2245 
  • 55e Nagashima S. Yokota M. Nakai E.-i. Kuromitsu S. Ohga K. Takeuchi M. Tsukamoto S.-i. Ohta M. Bioorg. Med. Chem.  2007,  15:  1044 
  • 56 For a recent review on benzotriazole chemistry, see: Katritzky AR. Rachwal S. Chem. Rev.  2009,  DOI: 10.1021/cr900204u
  • 57 Bae S. Lakshman MK. J. Org. Chem.  2008,  73:  3707 
  • 58 Bae S. Lakshman MK. Org. Lett.  2008,  10:  2203 
  • 60 Kang F.-A. Sui Z. Murray WV. J. Am. Chem. Soc.  2008,  130:  11300 
  • 61 Wacharasindhu S. Bardhan S. Wan Z.-K. Tabei K. Mansour TS. J. Am. Chem. Soc.  2009,  131:  4174 
  • 62 Long T. Burgess K. Chemtracts  1998,  11:  1037 ; and references cited therein
  • 63 Bardhan S. Wacharasindhu S. Wan Z.-K. Mansour TS. Org. Lett.  2009,  11:  2511 
  • 64a Navarro O. Kaur H. Mahjoor P. Nolan SP. J. Org. Chem.  2004,  69:  3173 
  • 64b Li S. Lin Y. Cao J. Zhang S. J. Org. Chem.  2007,  72:  4067 
  • 64c Kirchhoff JH. Netherton MR. Hills ID. Fu GC. J. Am. Chem. Soc.  2002,  124:  13662 
  • 64d Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 64e Suzuki A. Pure Appl. Chem.  1991,  63:  419 
  • 65 For Buchwald’s phosphine ligand (DTBBP), see: Aranyos A. Old DW. Kiyomori A. Wolfe JP. Sadighi JP. Buchwald SL. J. Am. Chem. Soc.  1999,  121:  4369 
  • 66a Adamo C. Amatore C. Ciofini I. Jutand A. Lakmini H. J. Am. Chem. Soc.  2006,  128:  6829 
  • 66b Aramendia MA. Lafont M. Moreno-Manas M. Perez M. Pleixats R. J. Org. Chem.  1999,  64:  3592 
  • 66c Hossain KM. Kameyama T. Shibata T. Tagaki K. Bull. Chem. Soc. Jpn.  2001,  74:  2415 
  • 66d Wong MS. Zhang XL. Tetrahedron Lett.  2001,  42:  4087 
  • 66e Yoshida H. Yamaryo Y. Ohshita J. Kunai A. Tetrahedron Lett.  2003,  44:  1541 
  • 66f Hatamoto Y. Sakaguchi S. Ishii Y. Org. Lett.  2004,  6:  4623 
  • 66g Yamamoto Y. Suzuki R. Hattori K. Nishiyama H. Synlett  2006,  1027 
  • 66h Stahl SS. Angew. Chem. Int. Ed.  2004,  43:  3400 
  • 66i Popp BV. Stahl SS. J. Am. Chem. Soc.  2006,  128:  2804 
  • 66j Yoo KS. Yoon CH. Jung KW. J. Am. Chem. Soc.  2006,  128:  16384 
  • 67 Bardhan S. Tabei K. Wan Z.-K. Mansour TS. Tetrahedron Lett.  2009,  50:  5733 
  • 68 Katritzky AR. Kurz T. Zhang S. Voronkov M. Heterocycles  2001,  55:  1703 
  • 69 Carpino LA. Imazumi H. El-Faham A. Ferrer FJ. Zhang C. Lee Y. Foxman MM. Henklein P. Hanay C. Mugge C. Wenschuh H. Klose J. Beyermann M. Bienert M. Angew. Chem. Int. Ed.  2002,  41:  442 
20

Lee, J.; Wan, Z.-K.; Wilson, D.; Chenail, E. unpublished results.

48

These reactions were performed under dilute conditions (0.02 M) to avoid problems with product or substrate solubility.

49

Trace amounts of N 6-dimethylamino-2′,3′,5′-tri-O-acetyladenosine were occasionally observed, probably resulting from decomposition of DMF.

59

Wacharasinhdu, S.; Wan, Z.-K.; Mansour, T. S. unpublished results.

70

While the toxicity profile of hexamethylphosphoramide (HMPA) is well established, that for tris(N,N-tetra-methylene)phosphoric acid triamide (TTPT) has not been reported to the best of our knowledge. Because of the close structural relationship of these compounds, experienced medicinal chemists could easily assume similar toxic effects until TTPT is tested or clear SARs have been established. Therefore, the same precautions should be taken when handling these compounds! One of the shared health concerns is that both liquid chemicals might cause respiratory problems, despite the fact that both liquids have relatively high boiling points (HMPA: 230-232 ˚C at 740 mmHg; TTPT: 140-142 ˚C at 0.1 mmHg) and reasonable flash points (HMPA: 144 ˚C, closed cup; TTPT: 112.8 ˚C, closed cup. See Aldrich material safety data sheets for HMPA (product number 52730) and TTPT (product number 93404).