Subscribe to RSS
DOI: 10.1055/s-0029-1219820
Phosphonium- and Benzotriazolyloxy-Mediated Bond-Forming Reactions and Their Synthetic Applications
Publication History
Publication Date:
15 April 2010 (online)

Abstract
Phosphonium and benzotriazolyloxy (and related) intermediates are easily prepared by the reactions of cyclic amides and ureas with (1H-benzotriazol-1-yloxy)triaminophosphonium hexafluorophosphate related reagents. The former intermediates could also be made available using analogous phosphonium reagents prepared in situ or from commercial sources. These intermediates efficiently lead to carbon-nitrogen, carbon-oxygen, carbon-sulfur, and carbon-carbon bond formations through nucleophilic aromatic substitution reactions with various nucleophiles. A new reaction involving the generation of phenols in situ from arylboronic acids and oxygen under palladium(0) catalysis or with boronic acids and hydrogen peroxide is reviewed.
1 Introduction
2 Phosphonium-Mediated Nucleophilic Aromatic Substitution Reactions of Heterocyclic Systems
2.1 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions via Modified Appel Conditions
2.2 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions via Commercially Available Phosphonium Reagents
2.2.1 (1H-Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium Hexafluorophosphate as an Activating Agent
2.2.2 (1H-Benzotriazol-1-yloxy)tripyrrolidinylphosphonium Hexafluorophosphate and Bromotripyrrolidinylphosphonium Hexafluorophosphate as Activating Agents
2.2.3 Solvent and Base Effects
2.3 Reactivity of Various Phosphonium Reagents
2.4 Phosphonium-Mediated Carbon-Oxygen, Carbon-Sulfur, and Carbon-Carbon Bond Forming Reactions
3 Benzotriazolyloxy-Mediated and Related Bond-Forming Reactions of Heterocyclic Systems
4 Phosphonium-Mediated Reaction Mechanisms
4.1 Stepwise Pathways via Phosphonium and 1H-Benzotriazol-1-ol (or Pyridotriazol-1-ol) Adducts
4.2 1H-Benzotriazol-1-ol (or Pyridotriazol-1-ol) Adduct Independent Pathway
5 Palladium-Catalyzed Heteroaryl Ether Formation from Benzotriazolyloxy- or Pyridotriazolyloxy-Substituted Heterocycles with Arylboronic Acids
6 Unusual 1H-Benzotriazol-1-ol Adduct Rearrangement
7 A Tentative Protection and Amination Strategy Involving a 1H-Benzotriazol-1-ol Adduct
8 Conclusion and Outlook
Key words
phosphonium - benzotriazoles - nucleophilic aromatic substitutions - aryl ethers - aminations
- For representative examples, see:
- 1a
Suhadolnik RJ. Nucleosides as Biological Probes Wiley; New York: 1979.Reference Ris Wihthout Link - 1b
Srivastava PC.Robins RK.Meyer RB. In Chemistry of Nucleosides and Nucleotides Vol. 1:Townsend LB. Plenum; New York: 1988. p.113-281Reference Ris Wihthout Link - 1c
Han S.Harris CM.Harris TM.Kim H.-YH.Kim SJ. J. Org. Chem. 1996, 61: 174Reference Ris Wihthout Link - 1d
Simons C.Wu Q.Htar TT. Curr. Top. Med. Chem. 2005, 5: 1191 ; and references cited thereinReference Ris Wihthout Link - 2 For recent syntheses, see:
Yoon DS.Han Y.Stark TM.Haber JC.Gregg BT.Stankovich SB. Org. Lett. 2004, 6: 4775 ; and references cited therein - For representative reviews on the pharmaceutical and clinical applications of quinazolinamines, see:
- 3a
Fry DW.Kraker AJ.McMichael A.Ambroso LA.Nelson JM.Leopold WR.Connors RW.Bridges AJ. Science (Washington, DC, U.S.) 1994, 265: 1093Reference Ris Wihthout Link - 3b
Bridges AJ. Chem. Rev. 2001, 101: 2541Reference Ris Wihthout Link - 3c
Liao JJ.-L. J. Med. Chem. 2007, 50: 409Reference Ris Wihthout Link - For the role of guanidines and amidines in chiral catalysis, see:
- 3d
Corey EJ.Grogan MJ. Org. Lett. 1999, 1: 157Reference Ris Wihthout Link - 3e
Weiss ME.Fischer DF.Xin Z.-q.Jautze S.Schweizer WB.Peters R. Angew. Chem. Int. Ed. 2006, 45: 5694Reference Ris Wihthout Link - 3f
Shen J.Nguyen TT.Goh Y.-P.Ye W.Fu X.Xu J.Tan C.-H. J. Am. Chem. Soc. 2006, 128: 13692Reference Ris Wihthout Link - 3g
Jautze S.Seiler P.Peters R. Angew. Chem. Int. Ed. 2007, 46: 1260Reference Ris Wihthout Link - 3h
Fischer DF.Xin Z.-q.Peters R. Angew. Chem. Int. Ed. 2007, 46: 7704Reference Ris Wihthout Link - For a few representative examples, see:
- 4a
Maruenda H.Chenna A.Liem L.-K.Singer B. J. Org. Chem. 1998, 63: 4385Reference Ris Wihthout Link - 4b
Van Brocklin HF.Lim JK.Coffing SL.Hom DL.Negash K.Ono MY.Gilmore JL.Bryant I.Riese DJII. J. Med. Chem. 2005, 48: 7445Reference Ris Wihthout Link - 4c
Wissner A.Floyd MB.Johnson BD.Fraser H.Ingalls C.Nittoli T.Dushin RG.Discafani C.Nilakantan R.Marini J.Ravi M.Cheung K.Tan X.Musto S.Annable T.Siegel MM.Loganzo F. J. Med. Chem. 2005, 48: 7560Reference Ris Wihthout Link - 4d
Mishani E.Abourbeh G.Jacobson O.Dissoki S.Daniel RB.Rozen Y.Shaul M.Levitzki A. J. Med. Chem. 2005, 48: 5337Reference Ris Wihthout Link - 4e
Domarkas J.Dudouit F.Williams C.Qiyu Q.Banerjee R.Brahimi F.Jean-Claude BJ. J. Med. Chem. 2006, 49: 3544Reference Ris Wihthout Link - For general Buchwald-Hartwig aminations, see:
- 5a
Wagaw S.Buchwald SL. J. Org. Chem. 1996, 61: 7240Reference Ris Wihthout Link - 5b
Old DW.Wolfe JP.Buchwald SL. J. Am. Chem. Soc. 1998, 120: 9722Reference Ris Wihthout Link - 5c
Wolfe JP.Wagaw S.Marcoux J.-F.Buchwald SL. Acc. Chem. Res. 1998, 31: 805Reference Ris Wihthout Link - 5d
Hartwig JF. Angew. Chem. Int. Ed. 1998, 37: 2046Reference Ris Wihthout Link - 5e
Hartwig JF. Acc. Chem. Res. 1998, 31: 852Reference Ris Wihthout Link - 6a
Castro B.Dormoy JR.Evin G.Selve C. Tetrahedron Lett. 1975, 16: 1219Reference Ris Wihthout Link - 6b
Coste J.Frérot E.Jouin P. J. Org. Chem. 1994, 59: 2437Reference Ris Wihthout Link - 6c
Campagne J.-M.Coste J.Jouin P. J. Org. Chem. 1995, 60: 5214Reference Ris Wihthout Link - For ester formation, see:
- 6d
Kim MH.Patel DV. Tetrahedron Lett. 1994, 35: 5603Reference Ris Wihthout Link - 6e
Coste J.Campagne J.-M. Tetrahedron Lett. 1995, 36: 4253Reference Ris Wihthout Link - 7a
Castro B.Chapleur Y.Gross B.Selve C. Tetrahedron Lett. 1972, 13: 5001Reference Ris Wihthout Link - 7b
Castro B.Selve C. Tetrahedron Lett. 1973, 14: 4459Reference Ris Wihthout Link - 7c
See also ref. 6a
Reference Ris Wihthout Link - 7d
Downie IM.Heaney H.Kemp G. Tetrahedron Lett. 1988, 44: 2619Reference Ris Wihthout Link - 7e
See also ref. 6c; and references cited therein.
Reference Ris Wihthout Link - 8
Wan Z.-K.Binnun E.Wilson D.Lee J. Org. Lett. 2005, 7: 5877 - 9
Wan Z.-K.Wacharasindhu S.Binnun E.Mansour T. Org. Lett. 2006, 8: 2425 - 10
Wan Z.-K.Wacharasindhu S.Levins C.Lin M.Tabei K.Mansour TS. J. Org. Chem. 2007, 72: 10194 - 11
De Napoli L.Messere A.Montesarchio D.Piccialli G.Santacroce C. Nucleosides Nucleotides 1991, 10: 1719 - 12
De Napoli L.Messere A.Montesarchio D.Piccialli G.Santacroce C.Varra M. J. Chem. Soc., Perkin Trans. 1 1994, 923 - 13
Appel R. Angew. Chem. Int. Ed. Engl. 1975, 14: 801 - 14a
Véliz EA.Beal PA. Tetrahedron Lett. 2000, 41: 1695Reference Ris Wihthout Link - The same methodology was also used for the bromination of 6-bromopurine ribonucleosides; see:
- 14b
Véliz EA.Beal PA. J. Org. Chem. 2001, 66: 8592Reference Ris Wihthout Link - 15
Hans JJ.Deriver RW.Burke SD. J. Org. Chem. 1999, 64: 1430 - 16
Bae S.Lakshman MK. J. Org. Chem. 2008, 73: 1311 - 17
Lin X.Robins MJ. Org. Lett. 2000, 2: 3497 - 18a
Janeba Z.Lin X.Robins MJ. Nucleosides, Nucleotides Nucleic Acids 2004, 23: 137Reference Ris Wihthout Link - 18b
Zhong M.Nowak I.Cannon JF.Robins MJ. J. Org. Chem. 2006, 71: 4216Reference Ris Wihthout Link - 18c
Zhong M.Nowak I.Robins MJ. Org. Lett. 2005, 7: 4601Reference Ris Wihthout Link - 19
Wan Z.-K.Lee J.Hotchandani R.Moretto A.Binnun E.Wilson DP.Kirincich SJ.Follows BC.Ipek M.Xu W.Joseph-McCarthy D.Zhang Y.-L.Tam M.Erbe DV.Tobin JF.Li W.Tam SY.Mansour TS.Wu J. ChemMedChem 2008, 3: 1525 ; and references cited therein - For representative examples, see:
- 21a
Nair V.Richardson SG. J. Org. Chem. 1980, 45: 3969Reference Ris Wihthout Link - 21b
See also ref. 1c
Reference Ris Wihthout Link - 21c
Liu J.Janeba Z.Robins MJ. Org. Lett. 2004, 6: 2917Reference Ris Wihthout Link - For recent reviews, see:
- 21d
Lakshman MK.
J. Organomet. Chem. 2002, 653: 234Reference Ris Wihthout Link - 21e
Hocek M. Eur. J. Org. Chem. 2003, 245Reference Ris Wihthout Link - 22
Robins MJ.Basom GL. Can. J. Chem. 1973, 51: 3161 - 23a
Lee H.Luna E.Hinz M.Stezowski JJ.Kiselyov AS.Harvey RG. J. Org. Chem. 1995, 60: 5604Reference Ris Wihthout Link - 23b
Maruenda H.Chenna A.Liem L.-K.Singer B.
J. Org. Chem. 1998, 63: 4385Reference Ris Wihthout Link - 23c
Lakshman MK.Sayer JM.Jerina DM. J. Am. Chem. Soc. 1991, 113: 6589Reference Ris Wihthout Link - 23d
Kim SJ.Harris CM.Jung K.-Y.Koreeda M.Harris TM. Tetrahedron Lett. 1991, 32: 6073Reference Ris Wihthout Link - 24a
Lakshman MK.Keeler JC.Hilmer JH.Martin JQ. J. Am. Chem. Soc. 1999, 121: 6090Reference Ris Wihthout Link - 24b
De Riccardis F.Bonala RR.Johnson F. J. Am. Chem. Soc. 1999, 121: 10453Reference Ris Wihthout Link - 24c
Elmquist CE.Stover JS.Wang Z.Rizzo CJ. J. Am. Chem. Soc. 2004, 126: 11190Reference Ris Wihthout Link - 24d
Dai Q.Ran C.Harvey RG. Org. Lett. 2005, 7: 999Reference Ris Wihthout Link - 25
Sung WL. J. Org. Chem. 1982, 47: 3623 - 26
Mansour TS.Evans CA.Siddiqui MA.Charron M.Zacharie B.Nguyen-Ba N.Lee N.Korba B. Nucleosides Nucleotides 1997, 16: 993 - 27a
Harvey RG. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity Cambridge University; Cambridge / UK: 1991.Reference Ris Wihthout Link - 27b
Glatt H.Seidel A.Harvey RG.Coughtrie MWH. Mutagenesis 1994, 9: 553Reference Ris Wihthout Link - 28
Seela F.Herdering W.Kehne A. Helv. Chim. Acta 1987, 70: 1649 - 29
Printz M.Richert C. Chem. Eur. J. 2009, 15: 3390 - 30
Wu W.Stupi BP.Litosh VA.Mansouri D.Farley D.Morris S.Metzker S.Metzker ML. Nucleic Acids Res. 2007, 35: 6339 - 31
Sakkar S.Perlstein EO.Imarisio S.Pineau S.Cordenier A.Maglathlin RL.Webster JA.Lewis TA.O’Kane CJ.Schreiber SL.Rubinsztein DC. Nat. Chem. Biol. 2007, 3: 331 - 32
Peng Z.-H.Journet M.Humphrey G. Org. Lett. 2006, 8: 395 - Isolation:
- 33a
Miller CO.Skoog F.Von Saltza MH.Strong FM. J. Am. Chem. Soc. 1955, 77: 1392Reference Ris Wihthout Link - 33b
Miller CO.Skoog F.Okumura FS.Von Saltza MH.Strong FM. J. Am. Chem. Soc. 1956, 78: 1375Reference Ris Wihthout Link - Syntheses, see:
- 33c
Villar JDF.Motta MA. Nucleosides, Nucleotides Nucleic Acids 2000, 19: 1005Reference Ris Wihthout Link - 33d
See also ref. 33b
Reference Ris Wihthout Link - 34
Barciszewski J.Mielcarek M.Stobiecki M.Siboska G.Clark BFC. Biochem. Biophys. Res. Commun. 2000, 279: 69 - 35 For a recent review on kinetin,
see:
Barciszewski J.Rattan SIS.Siboska G.Clark BFC. Plant Sci. 1999, 148: 37 - For representative biological activities, see:
- 36a
Hartwell LH.Kastan MB. Science (Washington, DC, U.S.) 1994, 266: 1821Reference Ris Wihthout Link - For recent six- to nine-step syntheses, see:
- 36b
Nugiel DA.Cornelius LAM.Corbett JW. J. Org. Chem. 1997, 62: 201Reference Ris Wihthout Link - 36c
Dorff PH.Garigipati RS. Tetrahedron Lett. 2001, 42: 2771Reference Ris Wihthout Link - 36d
Hammarström LGJ.Smith DB.Talamás FX.Labadie SS.Krauss NE. Tetrahedron Lett. 2002, 43: 8071Reference Ris Wihthout Link - 37
Levins CG.Wan Z.-K. Org. Lett. 2008, 10: 1755 ; and references cited therein for conventional syntheses - 38a
Madhavan R.Srinivasan VR. Indian J. Chem. 1969, 7: 760Reference Ris Wihthout Link - 38b
Confalone PN.Woodward RB. J. Am. Chem. Soc. 1983, 105: 902Reference Ris Wihthout Link - 38c
Deshmukh MB.Shelar MA.Mulik AR. Indian J. Heterocycl. Chem. 2000, 10: 13Reference Ris Wihthout Link - For the direct amination of oxadiazole-2-thiones, see:
- 38d
Laddi UV.Desai SR.Bennur RS.Bennur SC. Indian J. Heterocycl. Chem. 2002, 11: 319Reference Ris Wihthout Link - 38e
Honnalli SS.Ronad PM.Vijaybhasker K.Jukkeri VI.Kumar R. Heterocycl. Commun. 2005, 11: 505Reference Ris Wihthout Link - 39a
Smith AEW. Science (Washington, DC, U.S.) 1954, 119: 514Reference Ris Wihthout Link - 39b
Stempel A.Zelauskas J.Aeschlimann JA. J. Org. Chem. 1955, 20: 412Reference Ris Wihthout Link - 39c
Rosen GM.Popp FD.Gemmill FQ. J. Heterocycl. Chem. 1971, 8: 659Reference Ris Wihthout Link - 39d
Thompson SK.Smith WW.Zhao B.Halbert SM.Tomaszek TA.Tew DG.Levy MA.Janson CA.D’Alessio KJ.McQueney MS.Kurdyla J.Jones CS.DesJarlais RL.Abdel-Meguid SS.Veber DF.
J. Med. Chem. 1998, 41: 3923Reference Ris Wihthout Link - 40
Grzyb JA.Dekeyser MA.Batey RA. Synthesis 2005, 2384 - 41
Clemens JJ.Davis MD.Lynch KR.Macdonald TL. Bioorg. Med. Chem. Lett. 2004, 14: 4903 - 42
Anand NK.Blazey CM.Bowles OJ.Bussenius J.Canne Bannen L.Chan DS.-M.Chen B.Co EW.Costanzo S.Defina SC.Dubenko L.Franzini M.Huang P.Jammalamadaka V.Khoury RG.Kim MH.Klein RR.Le DT.Mac MB.Nuss JM.Parks JJ.Rice KD.Tsang T.Tsuhako AL.Wang Y.Xu W. WO 2005117909 - 43
Pritz S.Wolf Y.Klemm C.Bienert M. Tetrahedron Lett. 2006, 47: 5893 - 44
Kang F.-A.Kodah J.Guan Q.Li X.Murray WV. J. Org. Chem. 2005, 70: 1957 - 45
Kang F.-A.Sui Z.Murray WV. Eur. J. Org. Chem. 2009, 461 - 46
Ashton TD.Scammells PJ. Aust. J. Chem. 2008, 61: 49 - For example, the amination of guanosine proceeded much better with DBU in acetonitrile:
- 47a
Wan, Z.-K.; Binnun, E. unpublished results.
Reference Ris Wihthout Link - 47b
Lakshman MK.Frank J. Org. Biomol. Chem. 2009, 7: 2933Reference Ris Wihthout Link - 50
Ashton TD.Baker SP.Hutchinson SA.Scammells PJ. Bioorg. Med. Chem. 2008, 16: 1861 - 51
Bae S.Lakshman MK. J. Am. Chem. Soc. 2007, 129: 782 - 52
Xiao Z.Yang MG.Li P.Carter PH. Org. Lett. 2009, 11: 1421 - 53
Boge N.Kruger S.Schroder M.Meier C. Synthesis 2007, 3907 - 54
Rabisson P.Lenz O.Lin T.-I.Surleraux D.Chakravarty S.Scholliers A.Vermeiren K.Delouvroy F.Vervinnen T.Simmen K. Bioorg. Med. Chem. Lett. 2007, 17: 1843 - 55a
Scicinski JJ.Congreve MS.Jamieson C.Ley SV.Newman ES.Vinader VM.Carr RAE. J. Comb. Chem. 2001, 2: 387Reference Ris Wihthout Link - 55b
Hisamichi H.Naito R.Toyoshima A.Kawano N.Ichikawa A.Orita A.Orita M.Hamada N.Takeuchi M.Ohta M.Tsukamoto S.-i. Bioorg. Med. Chem. 2005, 13: 4936Reference Ris Wihthout Link - 55c
Hisamichi H.Naito R.Toyoshima A.Kawano N.Ichikawa A.Orita A.Orita M.Hamada N.Takeuchi M.Ohta M.Tsukamoto S.-i. Bioorg. Med. Chem. 2005, 13: 6277Reference Ris Wihthout Link - 55d
Reese CB.Richards KH. Tetrahedron Lett. 1985, 26: 2245Reference Ris Wihthout Link - 55e
Nagashima S.Yokota M.Nakai E.-i.Kuromitsu S.Ohga K.Takeuchi M.Tsukamoto S.-i.Ohta M. Bioorg. Med. Chem. 2007, 15: 1044Reference Ris Wihthout Link - 56 For a recent review on benzotriazole
chemistry, see:
Katritzky AR.Rachwal S. Chem. Rev. 2009, DOI: 10.1021/cr900204u - 57
Bae S.Lakshman MK. J. Org. Chem. 2008, 73: 3707 - 58
Bae S.Lakshman MK. Org. Lett. 2008, 10: 2203 - 60
Kang F.-A.Sui Z.Murray WV. J. Am. Chem. Soc. 2008, 130: 11300 - 61
Wacharasindhu S.Bardhan S.Wan Z.-K.Tabei K.Mansour TS. J. Am. Chem. Soc. 2009, 131: 4174 - 62
Long T.Burgess K. Chemtracts 1998, 11: 1037 ; and references cited therein - 63
Bardhan S.Wacharasindhu S.Wan Z.-K.Mansour TS. Org. Lett. 2009, 11: 2511 - 64a
Navarro O.Kaur H.Mahjoor P.Nolan SP. J. Org. Chem. 2004, 69: 3173Reference Ris Wihthout Link - 64b
Li S.Lin Y.Cao J.Zhang S. J. Org. Chem. 2007, 72: 4067Reference Ris Wihthout Link - 64c
Kirchhoff JH.Netherton MR.Hills ID.Fu GC. J. Am. Chem. Soc. 2002, 124: 13662Reference Ris Wihthout Link - 64d
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457Reference Ris Wihthout Link - 64e
Suzuki A. Pure Appl. Chem. 1991, 63: 419Reference Ris Wihthout Link - 65 For Buchwald’s phosphine
ligand (DTBBP), see:
Aranyos A.Old DW.Kiyomori A.Wolfe JP.Sadighi JP.Buchwald SL. J. Am. Chem. Soc. 1999, 121: 4369 - 66a
Adamo C.Amatore C.Ciofini I.Jutand A.Lakmini H. J. Am. Chem. Soc. 2006, 128: 6829Reference Ris Wihthout Link - 66b
Aramendia MA.Lafont M.Moreno-Manas M.Perez M.Pleixats R. J. Org. Chem. 1999, 64: 3592Reference Ris Wihthout Link - 66c
Hossain KM.Kameyama T.Shibata T.Tagaki K. Bull. Chem. Soc. Jpn. 2001, 74: 2415Reference Ris Wihthout Link - 66d
Wong MS.Zhang XL. Tetrahedron Lett. 2001, 42: 4087Reference Ris Wihthout Link - 66e
Yoshida H.Yamaryo Y.Ohshita J.Kunai A. Tetrahedron Lett. 2003, 44: 1541Reference Ris Wihthout Link - 66f
Hatamoto Y.Sakaguchi S.Ishii Y. Org. Lett. 2004, 6: 4623Reference Ris Wihthout Link - 66g
Yamamoto Y.Suzuki R.Hattori K.Nishiyama H. Synlett 2006, 1027Reference Ris Wihthout Link - 66h
Stahl SS. Angew. Chem. Int. Ed. 2004, 43: 3400Reference Ris Wihthout Link - 66i
Popp BV.Stahl SS. J. Am. Chem. Soc. 2006, 128: 2804Reference Ris Wihthout Link - 66j
Yoo KS.Yoon CH.Jung KW. J. Am. Chem. Soc. 2006, 128: 16384Reference Ris Wihthout Link - 67
Bardhan S.Tabei K.Wan Z.-K.Mansour TS. Tetrahedron Lett. 2009, 50: 5733 - 68
Katritzky AR.Kurz T.Zhang S.Voronkov M. Heterocycles 2001, 55: 1703 - 69
Carpino LA.Imazumi H.El-Faham A.Ferrer FJ.Zhang C.Lee Y.Foxman MM.Henklein P.Hanay C.Mugge C.Wenschuh H.Klose J.Beyermann M.Bienert M. Angew. Chem. Int. Ed. 2002, 41: 442
References
Lee, J.; Wan, Z.-K.; Wilson, D.; Chenail, E. unpublished results.
48These reactions were performed under dilute conditions (0.02 M) to avoid problems with product or substrate solubility.
49Trace amounts of N 6-dimethylamino-2′,3′,5′-tri-O-acetyladenosine were occasionally observed, probably resulting from decomposition of DMF.
59Wacharasinhdu, S.; Wan, Z.-K.; Mansour, T. S. unpublished results.
70While the toxicity profile of hexamethylphosphoramide (HMPA) is well established, that for tris(N,N-tetra-methylene)phosphoric acid triamide (TTPT) has not been reported to the best of our knowledge. Because of the close structural relationship of these compounds, experienced medicinal chemists could easily assume similar toxic effects until TTPT is tested or clear SARs have been established. Therefore, the same precautions should be taken when handling these compounds! One of the shared health concerns is that both liquid chemicals might cause respiratory problems, despite the fact that both liquids have relatively high boiling points (HMPA: 230-232 ˚C at 740 mmHg; TTPT: 140-142 ˚C at 0.1 mmHg) and reasonable flash points (HMPA: 144 ˚C, closed cup; TTPT: 112.8 ˚C, closed cup. See Aldrich material safety data sheets for HMPA (product number 52730) and TTPT (product number 93404).