Abstract
Phosphonium and benzotriazolyloxy (and related) intermediates
are easily prepared by the reactions of cyclic amides and ureas
with (1H -benzotriazol-1-yloxy)triaminophosphonium hexafluorophosphate
related reagents. The former intermediates could also be made available
using analogous phosphonium reagents prepared in situ or from commercial
sources. These intermediates efficiently lead to carbon-nitrogen,
carbon-oxygen, carbon-sulfur, and carbon-carbon
bond formations through nucleophilic aromatic substitution reactions
with various nucleophiles. A new reaction involving the
generation of phenols in situ from arylboronic acids and oxygen
under palladium(0) catalysis or with boronic acids and hydrogen
peroxide is reviewed.
1 Introduction
2 Phosphonium-Mediated Nucleophilic Aromatic Substitution Reactions
of Heterocyclic Systems
2.1 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions
via Modified Appel Conditions
2.2 Phosphonium-Mediated Carbon-Nitrogen Bond Forming Reactions
via Commercially Available Phosphonium Reagents
2.2.1 (1H -Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium
Hexafluorophosphate as an Activating Agent
2.2.2 (1H -Benzotriazol-1-yloxy)tripyrrolidinylphosphonium Hexafluorophosphate
and Bromotripyrrolidinylphosphonium Hexafluorophosphate as Activating
Agents
2.2.3 Solvent and Base Effects
2.3 Reactivity of Various Phosphonium Reagents
2.4 Phosphonium-Mediated Carbon-Oxygen, Carbon-Sulfur, and
Carbon-Carbon Bond Forming Reactions
3 Benzotriazolyloxy-Mediated and Related Bond-Forming Reactions
of Heterocyclic Systems
4 Phosphonium-Mediated Reaction Mechanisms
4.1 Stepwise Pathways via Phosphonium and 1H -Benzotriazol-1-ol
(or Pyridotriazol-1-ol) Adducts
4.2 1H -Benzotriazol-1-ol (or Pyridotriazol-1-ol)
Adduct Independent Pathway
5 Palladium-Catalyzed Heteroaryl Ether Formation from Benzotriazolyloxy-
or Pyridotriazolyloxy-Substituted Heterocycles with Arylboronic
Acids
6 Unusual 1H -Benzotriazol-1-ol Adduct
Rearrangement
7 A Tentative Protection and Amination Strategy Involving a 1H -Benzotriazol-1-ol Adduct
8 Conclusion and Outlook
Key words
phosphonium - benzotriazoles - nucleophilic
aromatic substitutions - aryl ethers - aminations
References
For representative examples, see:
1a
Suhadolnik RJ.
Nucleosides as Biological
Probes
Wiley;
New York:
1979.
1b
Srivastava PC.
Robins RK.
Meyer RB. In Chemistry
of Nucleosides and Nucleotides
Vol. 1:
Townsend LB.
Plenum;
New
York:
1988.
p.113-281
1c
Han S.
Harris CM.
Harris TM.
Kim H.-YH.
Kim SJ.
J. Org. Chem.
1996,
61:
174
1d
Simons C.
Wu Q.
Htar TT.
Curr.
Top. Med. Chem.
2005,
5:
1191 ; and
references cited therein
2 For recent syntheses, see: Yoon DS.
Han Y.
Stark TM.
Haber JC.
Gregg BT.
Stankovich SB.
Org. Lett.
2004,
6:
4775 ; and references cited therein
For representative reviews on the
pharmaceutical and clinical applications of quinazolinamines, see:
3a
Fry DW.
Kraker AJ.
McMichael A.
Ambroso LA.
Nelson JM.
Leopold WR.
Connors RW.
Bridges AJ.
Science
(Washington, DC, U.S.)
1994,
265:
1093
3b
Bridges AJ.
Chem. Rev.
2001,
101:
2541
3c
Liao
JJ.-L.
J. Med. Chem.
2007,
50:
409
For the role of guanidines and amidines in chiral catalysis,
see:
3d
Corey EJ.
Grogan MJ.
Org.
Lett.
1999,
1:
157
3e
Weiss ME.
Fischer DF.
Xin Z.-q.
Jautze S.
Schweizer WB.
Peters R.
Angew.
Chem. Int. Ed.
2006,
45:
5694
3f
Shen J.
Nguyen TT.
Goh Y.-P.
Ye W.
Fu X.
Xu J.
Tan C.-H.
J. Am. Chem.
Soc.
2006,
128:
13692
3g
Jautze S.
Seiler P.
Peters R.
Angew.
Chem. Int. Ed.
2007,
46:
1260
3h
Fischer DF.
Xin Z.-q.
Peters R.
Angew. Chem. Int. Ed.
2007,
46:
7704
For a few representative examples,
see:
4a
Maruenda H.
Chenna A.
Liem L.-K.
Singer B.
J. Org. Chem.
1998,
63:
4385
4b
Van Brocklin HF.
Lim JK.
Coffing SL.
Hom DL.
Negash K.
Ono MY.
Gilmore JL.
Bryant I.
Riese DJII.
J.
Med. Chem.
2005,
48:
7445
4c
Wissner A.
Floyd MB.
Johnson BD.
Fraser H.
Ingalls C.
Nittoli T.
Dushin RG.
Discafani C.
Nilakantan R.
Marini J.
Ravi M.
Cheung K.
Tan X.
Musto S.
Annable T.
Siegel MM.
Loganzo F.
J.
Med. Chem.
2005,
48:
7560
4d
Mishani E.
Abourbeh G.
Jacobson O.
Dissoki S.
Daniel RB.
Rozen Y.
Shaul M.
Levitzki A.
J. Med. Chem.
2005,
48:
5337
4e
Domarkas J.
Dudouit F.
Williams C.
Qiyu Q.
Banerjee R.
Brahimi F.
Jean-Claude BJ.
J.
Med. Chem.
2006,
49:
3544
For general Buchwald-Hartwig
aminations, see:
5a
Wagaw S.
Buchwald SL.
J. Org. Chem.
1996,
61:
7240
5b
Old DW.
Wolfe JP.
Buchwald SL.
J. Am. Chem. Soc.
1998,
120:
9722
5c
Wolfe JP.
Wagaw S.
Marcoux J.-F.
Buchwald SL.
Acc.
Chem. Res.
1998,
31:
805
5d
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2046
5e
Hartwig JF.
Acc. Chem. Res.
1998,
31:
852
6a
Castro B.
Dormoy JR.
Evin G.
Selve C.
Tetrahedron Lett.
1975,
16:
1219
6b
Coste J.
Frérot E.
Jouin P.
J.
Org. Chem.
1994,
59:
2437
6c
Campagne
J.-M.
Coste J.
Jouin P.
J.
Org. Chem.
1995,
60:
5214
For ester formation, see:
6d
Kim MH.
Patel DV.
Tetrahedron Lett.
1994,
35:
5603
6e
Coste J.
Campagne J.-M.
Tetrahedron Lett.
1995,
36:
4253
7a
Castro B.
Chapleur Y.
Gross B.
Selve C.
Tetrahedron Lett.
1972,
13:
5001
7b
Castro B.
Selve C.
Tetrahedron Lett.
1973,
14:
4459
7c See also ref. 6a
7d
Downie IM.
Heaney H.
Kemp G.
Tetrahedron
Lett.
1988,
44:
2619
7e See also ref. 6c; and
references cited therein.
8
Wan Z.-K.
Binnun E.
Wilson D.
Lee J.
Org. Lett.
2005,
7:
5877
9
Wan Z.-K.
Wacharasindhu S.
Binnun E.
Mansour T.
Org. Lett.
2006,
8:
2425
10
Wan Z.-K.
Wacharasindhu S.
Levins C.
Lin M.
Tabei K.
Mansour TS.
J. Org. Chem.
2007,
72:
10194
11
De Napoli L.
Messere A.
Montesarchio D.
Piccialli G.
Santacroce C.
Nucleosides
Nucleotides
1991,
10:
1719
12
De Napoli L.
Messere A.
Montesarchio D.
Piccialli G.
Santacroce C.
Varra M.
J. Chem. Soc., Perkin Trans.
1
1994,
923
13
Appel R.
Angew.
Chem. Int. Ed. Engl.
1975,
14:
801
14a
Véliz EA.
Beal PA.
Tetrahedron Lett.
2000,
41:
1695
The same methodology was also used for the bromination of
6-bromopurine ribonucleosides; see:
14b
Véliz EA.
Beal PA.
J.
Org. Chem.
2001,
66:
8592
15
Hans JJ.
Deriver RW.
Burke SD.
J. Org. Chem.
1999,
64:
1430
16
Bae S.
Lakshman MK.
J. Org. Chem.
2008,
73:
1311
17
Lin X.
Robins MJ.
Org. Lett.
2000,
2:
3497
18a
Janeba Z.
Lin X.
Robins MJ.
Nucleosides, Nucleotides Nucleic
Acids
2004,
23:
137
18b
Zhong M.
Nowak I.
Cannon JF.
Robins MJ.
J. Org. Chem.
2006,
71:
4216
18c
Zhong M.
Nowak I.
Robins MJ.
Org.
Lett.
2005,
7:
4601
19
Wan Z.-K.
Lee J.
Hotchandani R.
Moretto A.
Binnun E.
Wilson DP.
Kirincich SJ.
Follows BC.
Ipek M.
Xu W.
Joseph-McCarthy D.
Zhang Y.-L.
Tam M.
Erbe DV.
Tobin JF.
Li W.
Tam SY.
Mansour TS.
Wu J.
ChemMedChem
2008,
3:
1525 ; and references cited therein
20 Lee, J.; Wan, Z.-K.; Wilson, D.; Chenail,
E. unpublished results.
For representative examples, see:
21a
Nair V.
Richardson SG.
J. Org. Chem.
1980,
45:
3969
21b See also ref. 1c
21c
Liu J.
Janeba Z.
Robins MJ.
Org.
Lett.
2004,
6:
2917
For recent reviews, see:
21d
Lakshman MK.
J. Organomet. Chem.
2002,
653:
234
21e
Hocek M.
Eur.
J. Org. Chem.
2003,
245
22
Robins MJ.
Basom GL.
Can. J. Chem.
1973,
51:
3161
23a
Lee H.
Luna E.
Hinz M.
Stezowski JJ.
Kiselyov AS.
Harvey RG.
J.
Org. Chem.
1995,
60:
5604
23b
Maruenda H.
Chenna A.
Liem L.-K.
Singer B.
J. Org. Chem.
1998,
63:
4385
23c
Lakshman MK.
Sayer JM.
Jerina DM.
J. Am. Chem. Soc.
1991,
113:
6589
23d
Kim SJ.
Harris CM.
Jung K.-Y.
Koreeda M.
Harris TM.
Tetrahedron Lett.
1991,
32:
6073
24a
Lakshman MK.
Keeler JC.
Hilmer JH.
Martin
JQ.
J. Am. Chem. Soc.
1999,
121:
6090
24b
De Riccardis F.
Bonala RR.
Johnson F.
J.
Am. Chem. Soc.
1999,
121:
10453
24c
Elmquist CE.
Stover JS.
Wang Z.
Rizzo
CJ.
J.
Am. Chem. Soc.
2004,
126:
11190
24d
Dai Q.
Ran C.
Harvey RG.
Org.
Lett.
2005,
7:
999
25
Sung WL.
J.
Org. Chem.
1982,
47:
3623
26
Mansour TS.
Evans CA.
Siddiqui MA.
Charron M.
Zacharie B.
Nguyen-Ba N.
Lee N.
Korba B.
Nucleosides
Nucleotides
1997,
16:
993
27a
Harvey RG.
Polycyclic
Aromatic Hydrocarbons: Chemistry and Carcinogenicity
Cambridge
University;
Cambridge / UK:
1991.
27b
Glatt H.
Seidel A.
Harvey
RG.
Coughtrie MWH.
Mutagenesis
1994,
9:
553
28
Seela F.
Herdering W.
Kehne A.
Helv.
Chim. Acta
1987,
70:
1649
29
Printz M.
Richert C.
Chem. Eur. J.
2009,
15:
3390
30
Wu W.
Stupi BP.
Litosh VA.
Mansouri D.
Farley D.
Morris S.
Metzker S.
Metzker ML.
Nucleic Acids Res.
2007,
35:
6339
31
Sakkar S.
Perlstein EO.
Imarisio S.
Pineau S.
Cordenier A.
Maglathlin RL.
Webster JA.
Lewis
TA.
O’Kane CJ.
Schreiber SL.
Rubinsztein DC.
Nat.
Chem. Biol.
2007,
3:
331
32
Peng Z.-H.
Journet M.
Humphrey G.
Org.
Lett.
2006,
8:
395
Isolation:
33a
Miller CO.
Skoog F.
Von Saltza MH.
Strong FM.
J.
Am. Chem. Soc.
1955,
77:
1392
33b
Miller CO.
Skoog F.
Okumura FS.
Von Saltza MH.
Strong FM.
J. Am. Chem. Soc.
1956,
78:
1375
Syntheses, see:
33c
Villar JDF.
Motta MA.
Nucleosides,
Nucleotides Nucleic Acids
2000,
19:
1005
33d See also ref. 33b
34
Barciszewski J.
Mielcarek M.
Stobiecki M.
Siboska G.
Clark BFC.
Biochem. Biophys. Res. Commun.
2000,
279:
69
35 For a recent review on kinetin,
see: Barciszewski J.
Rattan SIS.
Siboska G.
Clark BFC.
Plant Sci.
1999,
148:
37
For representative biological activities,
see:
36a
Hartwell
LH.
Kastan MB.
Science
(Washington, DC, U.S.)
1994,
266:
1821
For recent six- to nine-step syntheses, see:
36b
Nugiel DA.
Cornelius LAM.
Corbett JW.
J. Org. Chem.
1997,
62:
201
36c
Dorff PH.
Garigipati RS.
Tetrahedron
Lett.
2001,
42:
2771
36d
Hammarström LGJ.
Smith DB.
Talamás FX.
Labadie SS.
Krauss
NE.
Tetrahedron
Lett.
2002,
43:
8071
37
Levins CG.
Wan Z.-K.
Org. Lett.
2008,
10:
1755 ; and references cited therein for conventional
syntheses
38a
Madhavan R.
Srinivasan VR.
Indian
J. Chem.
1969,
7:
760
38b
Confalone PN.
Woodward RB.
J.
Am. Chem. Soc.
1983,
105:
902
38c
Deshmukh MB.
Shelar MA.
Mulik AR.
Indian J. Heterocycl. Chem.
2000,
10:
13
For the direct amination of oxadiazole-2-thiones, see:
38d
Laddi UV.
Desai SR.
Bennur RS.
Bennur SC.
Indian
J. Heterocycl. Chem.
2002,
11:
319
38e
Honnalli SS.
Ronad PM.
Vijaybhasker K.
Jukkeri VI.
Kumar R.
Heterocycl. Commun.
2005,
11:
505
39a
Smith AEW.
Science (Washington,
DC, U.S.)
1954,
119:
514
39b
Stempel A.
Zelauskas J.
Aeschlimann JA.
J.
Org. Chem.
1955,
20:
412
39c
Rosen GM.
Popp FD.
Gemmill FQ.
J. Heterocycl. Chem.
1971,
8:
659
39d
Thompson SK.
Smith WW.
Zhao B.
Halbert SM.
Tomaszek TA.
Tew DG.
Levy MA.
Janson CA.
D’Alessio KJ.
McQueney MS.
Kurdyla J.
Jones CS.
DesJarlais RL.
Abdel-Meguid SS.
Veber DF.
J. Med. Chem.
1998,
41:
3923
40
Grzyb JA.
Dekeyser MA.
Batey RA.
Synthesis
2005,
2384
41
Clemens JJ.
Davis MD.
Lynch KR.
Macdonald TL.
Bioorg. Med. Chem.
Lett.
2004,
14:
4903
42
Anand NK.
Blazey CM.
Bowles OJ.
Bussenius J.
Canne Bannen L.
Chan DS.-M.
Chen B.
Co EW.
Costanzo S.
Defina SC.
Dubenko L.
Franzini M.
Huang P.
Jammalamadaka V.
Khoury RG.
Kim MH.
Klein RR.
Le DT.
Mac MB.
Nuss JM.
Parks JJ.
Rice KD.
Tsang T.
Tsuhako AL.
Wang Y.
Xu W. WO 2005117909
43
Pritz S.
Wolf Y.
Klemm C.
Bienert M.
Tetrahedron Lett.
2006,
47:
5893
44
Kang F.-A.
Kodah J.
Guan Q.
Li X.
Murray WV.
J.
Org. Chem.
2005,
70:
1957
45
Kang F.-A.
Sui Z.
Murray WV.
Eur.
J. Org. Chem.
2009,
461
46
Ashton TD.
Scammells PJ.
Aust. J. Chem.
2008,
61:
49
For example, the amination of guanosine
proceeded much better with DBU in acetonitrile:
47a Wan, Z.-K.; Binnun,
E. unpublished results.
47b
Lakshman MK.
Frank J.
Org. Biomol.
Chem.
2009,
7:
2933
48 These reactions were performed under
dilute conditions (0.02 M) to avoid problems with product or substrate solubility.
49 Trace amounts of N
6 -dimethylamino-2′,3′,5′-tri-O -acetyladenosine were occasionally observed,
probably resulting from decomposition of DMF.
50
Ashton TD.
Baker SP.
Hutchinson SA.
Scammells PJ.
Bioorg.
Med. Chem.
2008,
16:
1861
51
Bae S.
Lakshman MK.
J. Am. Chem. Soc.
2007,
129:
782
52
Xiao Z.
Yang MG.
Li P.
Carter PH.
Org. Lett.
2009,
11:
1421
53
Boge N.
Kruger S.
Schroder M.
Meier C.
Synthesis
2007,
3907
54
Rabisson P.
Lenz O.
Lin T.-I.
Surleraux D.
Chakravarty S.
Scholliers A.
Vermeiren K.
Delouvroy F.
Vervinnen T.
Simmen K.
Bioorg. Med. Chem. Lett.
2007,
17:
1843
55a
Scicinski JJ.
Congreve MS.
Jamieson C.
Ley SV.
Newman ES.
Vinader VM.
Carr RAE.
J.
Comb. Chem.
2001,
2:
387
55b
Hisamichi H.
Naito R.
Toyoshima A.
Kawano N.
Ichikawa A.
Orita A.
Orita M.
Hamada N.
Takeuchi M.
Ohta M.
Tsukamoto S.-i.
Bioorg.
Med. Chem.
2005,
13:
4936
55c
Hisamichi H.
Naito R.
Toyoshima A.
Kawano N.
Ichikawa A.
Orita A.
Orita M.
Hamada N.
Takeuchi M.
Ohta M.
Tsukamoto S.-i.
Bioorg.
Med. Chem.
2005,
13:
6277
55d
Reese CB.
Richards KH.
Tetrahedron
Lett.
1985,
26:
2245
55e
Nagashima S.
Yokota M.
Nakai E.-i.
Kuromitsu S.
Ohga K.
Takeuchi M.
Tsukamoto S.-i.
Ohta M.
Bioorg. Med. Chem.
2007,
15:
1044
56 For a recent review on benzotriazole
chemistry, see: Katritzky AR.
Rachwal S.
Chem. Rev.
2009, DOI: 10.1021/cr900204u
57
Bae S.
Lakshman MK.
J. Org. Chem.
2008,
73:
3707
58
Bae S.
Lakshman MK.
Org. Lett.
2008,
10:
2203
59 Wacharasinhdu, S.; Wan, Z.-K.; Mansour,
T. S. unpublished results.
60
Kang F.-A.
Sui Z.
Murray WV.
J.
Am. Chem. Soc.
2008,
130:
11300
61
Wacharasindhu S.
Bardhan S.
Wan Z.-K.
Tabei K.
Mansour TS.
J.
Am. Chem. Soc.
2009,
131:
4174
62
Long T.
Burgess K.
Chemtracts
1998,
11:
1037 ; and references cited therein
63
Bardhan S.
Wacharasindhu S.
Wan Z.-K.
Mansour TS.
Org. Lett.
2009,
11:
2511
64a
Navarro O.
Kaur H.
Mahjoor P.
Nolan SP.
J.
Org. Chem.
2004,
69:
3173
64b
Li S.
Lin Y.
Cao J.
Zhang S.
J. Org. Chem.
2007,
72:
4067
64c
Kirchhoff JH.
Netherton MR.
Hills ID.
Fu GC.
J.
Am. Chem. Soc.
2002,
124:
13662
64d
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
64e
Suzuki A.
Pure
Appl. Chem.
1991,
63:
419
65 For Buchwald’s phosphine
ligand (DTBBP), see: Aranyos A.
Old DW.
Kiyomori A.
Wolfe JP.
Sadighi JP.
Buchwald SL.
J. Am. Chem. Soc.
1999,
121:
4369
66a
Adamo C.
Amatore C.
Ciofini I.
Jutand A.
Lakmini H.
J. Am. Chem. Soc.
2006,
128:
6829
66b
Aramendia
MA.
Lafont M.
Moreno-Manas M.
Perez M.
Pleixats R.
J. Org. Chem.
1999,
64:
3592
66c
Hossain KM.
Kameyama T.
Shibata T.
Tagaki K.
Bull. Chem.
Soc. Jpn.
2001,
74:
2415
66d
Wong MS.
Zhang XL.
Tetrahedron Lett.
2001,
42:
4087
66e
Yoshida H.
Yamaryo Y.
Ohshita J.
Kunai A.
Tetrahedron Lett.
2003,
44:
1541
66f
Hatamoto Y.
Sakaguchi S.
Ishii Y.
Org.
Lett.
2004,
6:
4623
66g
Yamamoto Y.
Suzuki R.
Hattori K.
Nishiyama H.
Synlett
2006,
1027
66h
Stahl SS.
Angew. Chem. Int. Ed.
2004,
43:
3400
66i
Popp BV.
Stahl SS.
J.
Am. Chem. Soc.
2006,
128:
2804
66j
Yoo KS.
Yoon CH.
Jung KW.
J. Am. Chem. Soc.
2006,
128:
16384
67
Bardhan S.
Tabei K.
Wan Z.-K.
Mansour TS.
Tetrahedron Lett.
2009,
50:
5733
68
Katritzky AR.
Kurz T.
Zhang S.
Voronkov M.
Heterocycles
2001,
55:
1703
69
Carpino LA.
Imazumi H.
El-Faham A.
Ferrer FJ.
Zhang C.
Lee Y.
Foxman MM.
Henklein P.
Hanay C.
Mugge C.
Wenschuh H.
Klose J.
Beyermann M.
Bienert M.
Angew. Chem. Int. Ed.
2002,
41:
442
70 While the toxicity profile of hexamethylphosphoramide (HMPA)
is well established, that for tris(N ,N -tetra-methylene)phosphoric acid triamide
(TTPT) has not been reported to the best of our knowledge. Because
of the close structural relationship of these compounds, experienced medicinal
chemists could easily assume similar toxic effects until TTPT is
tested or clear SARs have been established. Therefore, the same
precautions should be taken when handling these compounds! One of
the shared health concerns is that both liquid chemicals might cause respiratory
problems, despite the fact that both liquids have relatively high
boiling points (HMPA: 230-232 ˚C at 740 mmHg;
TTPT: 140-142 ˚C at 0.1 mmHg) and reasonable flash
points (HMPA: 144 ˚C, closed cup; TTPT: 112.8 ˚C, closed
cup. See Aldrich material safety data sheets for HMPA (product number
52730) and TTPT (product number 93404).