Subscribe to RSS
DOI: 10.1055/s-0029-1219919
On the Hydrogenation of Glycosyl Oxazolines
Publication History
Publication Date:
06 May 2010 (online)
Abstract
An investigation is undertaken into the propensity of glycosyl oxazolines to undergo reductive cleavage by catalytic hydrogenation. Results indicate that the protecting groups on carbohydrate hydroxyl groups modulate the rate of glycosyl oxazoline reduction; electron-withdrawing ester groups curtail reaction so that reductive cleavage of benzyl ethers and esters, or reduction of azide elsewhere in the molecule may be readily achieved.
Key words
carbohydrates - oxazolines - hydrogenation - protecting groups - reactivity tuning
- 1
Banoub J.Boullanger P.Lafont D. Chem. Rev. 1992, 92: 1167 -
2a
Li B.Zeng Y.Hauser S.Song HJ.Wang L.-X.
J. Am. Chem. Soc. 2005, 127: 9692 -
2b
Li H.Li B.Song H.Breydo L.Baskakov IV.Wang L.-X. J. Org. Chem. 2005, 70: 9990 -
2c
Wang L.-X.Song HJ.Liu SW.Lu H.Jiang SB.Ni JH.Li HG. ChemBioChem 2005, 6: 1068 -
2d
Li H.Singh S.Zeng Y.Song H.Wang L.-X. Bioorg. Med. Chem. Lett. 2005, 15: 895 -
2e
Zeng Y.Wang JS.Li B.Hauser S.Li HG.Wang L.-X. Chem. Eur. J. 2006, 12: 3355 -
2f
Li B.Song H.Hauser S.Wang L.-X. Org. Lett. 2006, 8: 3081 -
2g
Umekawa M.Huang W.Li B.Fujita K.Ashida H.Wang L.-X.Yamamoto K. J. Biol. Chem. 2008, 283: 4469 -
2h
Wang L.-X. Carbohydr. Res. 2008, 343: 1509 -
2i
Huang W.Ochiai H.Zhang X.Wang L.-X. Carbohydr. Res. 2008, 343: 2903 -
2j
Wei Y.Li C.Huang W.Li B.Strome S.Wang L.-X. Biochemistry 2008, 47: 10294 -
2k
Ochiai H.Huang W.Wang L.-X. J. Am. Chem. Soc. 2008, 130: 13790 -
2l
Ochiai H.Huang W.Wang L.-X. Carbohydr. Res. 2009, 344: 592 -
2m
Huang W.Li C.Li B.Umekawa M.Yamamoto K.Zhang X.Wang L.-X.
J. Am. Chem. Soc. 2009, 131: 2214 -
3a
Rising TWDF.Claridge TDW.Davies N.Gamblin DP.Moir JWB.Fairbanks AJ. Carbohydr. Res. 2006, 341: 1574 -
3b
Rising TWDF.Claridge TDW.Moir JWB.Fairbanks AJ. ChemBioChem 2006, 7: 1177 -
3c
Rising TWDF.Heidecke CD.Moir JWB.Ling Z.Fairbanks AJ. Chem. Eur. J. 2008, 14: 6444 -
3d
Heidecke CD.Ling Z.Bruce NC.Moir JWB.Parsons TB.Fairbanks AJ. ChemBioChem 2008, 9: 2045 -
3e
Parsons TB.Moir JWB.Fairbanks AJ. Org. Biomol. Chem. 2009, 7: 3128 -
3f
Heidecke CD.Parsons TB.Fairbanks AJ. Carbohydr. Res. 2009, 344: 2433 -
3g
Parsons TB.Patel MK.Vocadlo DJ.Boraston AB.Fairbanks AJ. Org. Biomol. Chem. 2010, 8: 1861 - 4
Fujita M.Shoda S.-i.Haneda K.Inazu T.Takegawa K.Yamamoto K. Biochim. Biophys. Acta 2001, 1528: 9 -
6a
Takegawa K.Yamaguchi S.Kondo A.Kato I.Iwahara S. Biochem. Int. 1991, 25: 829 -
6b
Takegawa K.Tabuchi M.Yamaguchi S.Kondo A.Kato I.Iwahara S. J. Biol. Chem. 1995, 270: 3094 -
6c
Takegawa K.Yamabe K.Fujita K.Tabuchi M.Mita M.Izu H.Watanabe A.Asada Y.Sano M.Kondo A.Kato I.Iwahara S. Arch. Biochem. Biophys. 1997, 338: 22 -
6d
Fujita K.Takegawa K. Biochem. Biophys. Res. Commun. 2001, 283: 680 -
7a
Kadowaki S.Yamamoto K.Fujisaki M.Kumagai H.Tochikura T. Agric. Biol. Chem. 1988, 52: 2387 -
7b
Kadowaki S.Yamamoto K.Fujisaki M.Izumi K.Tochikura T.Yokoyama T. Agric. Biol. Chem. 1990, 54: 97 -
7c
Yamamoto K.Kadowaki S.Watanabe J.Kumagai H. Biochem. Biophys. Res. Commun. 1994, 203: 244 -
7d
Haneda K.Inazu T.Yamamoto K.Kumagai H.Nakahara Y.Kobata A. Carbohydr. Res. 1996, 292: 61 -
7e
Yamamoto K.Fujimori K.Haneda K.Mizuno M.Inazu T.Kumagai H. Carbohydr. Res. 1998, 305: 415 -
7f
Mizuno M.Haneda K.Iguchi R.Muramoto I.Kawakami T.Aimoto S.Yamamoto K.Inazu T. J. Am. Chem. Soc. 1999, 121: 284 -
7g
Fujita K.Kobayashi K.Iwamatsu A.Takeuchi M.Kumagai H.Yamamoto K. Arch. Biochem. Biophys. 2004, 432: 41 - 8
Jha R.Davis JT. Carbohydr. Res. 1995, 277: 125 - 9
Hesek D.Lee M.Yamaguchi T.Noll BC.Mobashery S. J. Org. Chem. 2008, 73: 7349 - 12
Bamford MJ.Pichel JC.Husman W.Patel B.Storer R.Weir NG. J. Chem. Soc., Perkin Trans. 1 1995, 1181 - 13
Danac R.Ball L.Gurr SJ.Muller T.Fairbanks AJ. ChemBioChem 2007, 8: 1241 - 17
Mootoo DR.Konradsson P.Udodong U.Fraser-Reid B. J. Am. Chem. Soc. 1988, 110: 5583 -
18a
Douglas NL.Ley SV.Lucking U.Warriner SL. J. Chem. Soc., Perkin Trans. 1 1998, 51 -
18b
Zhang Z.Ollmann IR.Ye XS.Wischnat R.Baasov T.Wong C.-H. J. Am. Chem. Soc. 1999, 121: 734 - 19
Noguchi M.Tanaka T.Gyakushi H.Kobayashi A.Shoda S.-i. J. Org. Chem. 2009, 74: 2210
References and Notes
http://www.cazy.org/fam/GH85.html.
10
Typical Procedure
for Catalytic Hydrogenation
Glycosyl oxazoline (ca.
20 mg), NaHCO3 (2 equiv), and Et3N (20 equiv)
were dissolved in a mixture of t-BuOH
(1.2 mL) and H2O (0.2 mL). The mixture was degassed and
put under an atmosphere of nitrogen. Palladium black was added,
and the mixture was then stirred at r.t. under an atmosphere of
hydrogen until TLC (EtOAc) indicated complete consumption of the
starting material (R
f
typically ca. 0.35), and the
formation of a polar product (R
f
= ca. 0.0). Mass spectrometric
analysis indicated the presence of a single product. The reaction
mixture was filtered through Celite,® the Celite® washed
twice with H2O (2 × 0.5 mL)
and the combined aqueous fractions lyophilized.
Selected Data for Compound 4 IR (KBr disc): νmax = 3425 (br, OH), 1646 (s, C=N) cm-¹. ¹H NMR (500 MHz, D2O): δ = 2.01 (3 H, s, CH3), 3.26 (1 H, at, J = 10.4 Hz, H-1ax), 3.39 (1 H, dt, J = 3.1, 9.3 Hz, H-5), 3.54 (1 H, at, J = 9.3 Hz, H-3), 3.60 (1 H, at, J = 9.3 Hz, H-4), 3.86-3.95 (2 H, m, H-1eq, H-2), 3.97-3.98 (2 H, m, H-6, H-6′). ¹³C NMR (125.8 MHz, D2O): δ = 21.9 (q, CH3), 51.3 (d, C-2), 62.9 (dt, C-6), 67.2 (t, C-1), 69.6 (d, C-4), 74.3 (d, C-3), 80.1 (dd, C-5), 174.6 (1 × s, C=O). ³¹P NMR (202.6 MHz, D2O): δ = 4.6. MS (ES-): m/z (%) = 284 (100) [M - H]-. HRMS (ES-): m/z calcd for C8H15NO8P [M - H]-: 284.0541; found: 284.0547.
14Selected Data for Compound 15
IR (KBr disc): νmax = 3320
(br, NH stretch), 1750 (s, C=O), 1671 (s, C=N),
1663 (s, C=O) cm-¹. ¹H
NMR (400 MHz, C6D6): δ = 1.61 [3
H, d, J
2a,CH3 = 2.7
Hz, N=C(CH3)], 1.68, 1.72, 1.77 (9
H, 3 × s, 3 × CH3),
3.49 (1 H, ddd, J
4,5 = 9.4
Hz, J
5,6 = 6.8 Hz, J
5,6
′ = 2.9
Hz, H-5), 3.74 (1 H, m, H-4), 4.37 (1 H, dd, J
6,6
′ = 12.3
Hz, J
5,6 = 6.8 Hz,
H-6), 4.53-4.63 (2 H, m, H-2, H-6′), 5.40 (1 H,
m, H-3), 5.52 (1 H, d, J
1,2 = 7.2
Hz, H-1), 6.66 (1 H, br d, J = 9.2
Hz, NH). ¹³C NMR (100 MHz, C6D6): δ = 13.4 [q,
C=N(CH3)], 20.3, 20.4, 22.5 (3 × q, 3 × CH3),
47.4 (d, C-2), 64.6 (d, C-4), 64.8 (t, C-6), 71.6 (d, C-5), 71.8
(d, C-3), 100.2 (d, C-1), 168.7 (s, C=N), 169.2, 170.1,
170.2 (3 × s, 3 × C=O).
MS (ES+): m/z (%) = 451 (100) [MNa+].
HRMS (ES+): m/z calcd
for C14H20N2NaO7 [MNa+]:
451.1163; found: 451.1163.
Selected Data for Compound 17
IR (KBr disc): νmax = 3427
(br, OH stretch), 1672 (s, C=O), 1639 (br, C=N)
cm-¹. ¹H NMR (500
MHz, D2O): δ = 1.93 [3 H,
s, N=C(CH3)], 3.39-3.41 (1
H, m, H-5), 3.65 (1 H, dd,
J
3,4 = 5.0
Hz, J
4,5 = 9.0 Hz,
H-4), 3.76 (1 H, app t, J = 4.7
Hz, H-3), 3.81-3.87 (2 H, m, H-6, H-6′), 3.95
(1 H, m, H-2), 5.98 (1 H, d, J
1,2 = 7.4
Hz, H-1). ¹³C NMR (125.8 MHz, D2O):
δ = 13.1 [q,
N=C(CH3)], 63.2 (dt, C-6), 66.4 (d,
C-2), 68.2 (d, C-4), 72.7 (dd, C-5), 80.0 (d, C-3), 101.2 (d, C-1),
165.7 (s, C=N). ³¹P NMR (203
MHz, D2O): δ = 5.54. MS: (ES-): m/z (%) = 282
(100) [M - H]-. HRMS
(ES-): m/z calcd
for C8H13NO8P [M - H]-:
282.0384; found: 282.0389.
Selected Data for 19
IR
(KBr disc): νmax = 3429 (br, OH stretch),
1641 (br, C=N) cm-¹. ¹H
NMR (500 MHz, D2O): δ = 2.07 [3
H, br s, N=C(CH3)], 3.42-3.45
(2 H, m, H-5a, H-5b), 3.63-3.68 (2 H, m, H-4b, H-6a), 3.72-3.83
(5 H, m, H-3b, H-4a, H-5c, H-6b, H-6′a), 3.86-3.96
(4 H, m, H-3c, H-4c, H-6c, H-6′b), 4.00-4.08 (2
H, m, H-2c, H-6′c), 4.11 (1 H, d, J = 2.7
Hz, H-2b), 4.18 (1 H, br d, J = 6.7
Hz, H-2a), 4.38 (1 H, s, H-3a), 4.76 (1 H, s, H-1b), 5.11 (1 H,
s, H-1c), 6.08 (1 H, d, J
1,2 = 7.3
Hz, H-1a). ¹³C NMR (125.8 MHz, D2O): δ = 13.0 [q, C=N(CH3)],
61.0 (t, C-6b), 61.5 (t, C-6a), 62.6 (dt, C-6c), 65.2 (d, C-2a),
66.0 (d, C-4c), 66.2 (d, C-4b), 69.3 (d, C-3a), 70.0 (d, C-3c),
70.1 (m, C-2b, C-2c), 70.9 (d, C-5a), 72.8 (dd, C-5c), 76.1 (d,
C-5b), 77.6 (d, C-4a), 80.3 (d, C-3b), 99.9 (d, C-1a), 101.1 (d,
C-1b), 102.5 (d, C-1c), 168.6 (s, C=N). ³¹P
NMR (162 MHz, D2O): δ = 5.71. MS (ES-):
m/z (%) = 606
(100) [M - 2Na + H]-.
HRMS (ES-): m/z calcd for
C20H33NO18P [M - 2Na + H]-:
606.1441; found: 606.1436.