Subscribe to RSS
DOI: 10.1055/s-0029-1223409
© Georg Thieme Verlag KG Stuttgart · New York
Fortschritte in Früh- und Verlaufsdiagnostik bei Morbus Huntington
Progress in Premanifest and Manifest Diagnostics in Huntington's DiseasePublication History
Publication Date:
18 November 2009 (online)
Zusammenfassung
Bereits lange vor der Möglichkeit einer molekulargenetischen Untersuchung war es Ziel der Neurologie, Methoden zu entwickeln, die eine möglichst frühzeitige Diagnose und prognostische Vorhersage bei Morbus Huntington ermöglichen. Die Entwicklung von verlässlichen Indikatoren für frühe neuronale Funktionsbeeinträchtigungen und von möglichen Endpunkten in Studien zur Prüfung neuroprotektiv wirksamer Substanzen hat an Intensität und Dringlichkeit gewonnen. Neuere Daten, insbesondere aus der PREDICT-Studie, bestätigen das Auftreten objektivierbarer Veränderungen Jahre vor Auftritt motorischer Symptome. In dieser Übersichtsarbeit soll ein Überblick über den derzeitigen Stand der Forschung zur Gewinnung objektiver Verlaufsparameter gegeben werden. Behandelt werden klinisch-neurologische, psychiatrische, neuropsychologische und neurophysiologische Befunde, Motorikuntersuchungen, bildgebende Verfahren (MRT, fMRT, PET und SPECT), Magnetresonanzspektroskopie (MRS), statistische und mathematische Ansätze sowie laborchemische Ansätze. Zusammenfassend lassen sich mithilfe der verschiedenen Techniken erste Veränderungen bei den Mutationsträgern bereits 10–20 Jahre vor dem Auftreten von diagnosesichernden motorischen Symptomen nachweisen. Zusätzlich zeigen sich in aktuellen Untersuchungen überraschend hochregulierte Prozesse bei Probanden, welche weit entfernt sind vom vermuteten Erkrankungsbeginn (> 10 Jahre). Es ist noch nicht geklärt, ob es sich dabei um einen Teil der Pathologie oder um Kompensationsmechanismen handelt. Die Autoren schlagen vor, aufgrund dieser Befunde in zumindest 2 Phasen bei prämanifesten Mutationsträgern zu unterscheiden, eine erste frühe Phase, bei der (im Vergleich zu Kontrollen) hochregulierte Prozesse im Vordergrund stehen, und eine zweite, spätere Phase, bei der Defizite das Bild beherrschen, die mittels funktioneller Untersuchungstechniken detektierbar werden.
Abstract
For a long time – even before genetic testing became available – neurologists have been searching for reliable markers or tests to predict the diagnosis of Huntington's disease (HD) before the first clinical symptoms appear. Today the development of indicators which allow reliable detection of disease progression is becoming increasingly important in the context of clinical neuroprotective studies. New data which derive from studies like PREDICT-HD confirm the occurrence of objective changes many years before first motor symptoms are detectable. In this review we give an overview over the various methods that are currently under clinical testing to evaluate disease onset and progression. We focus on clinical tests as well as psychiatric, neuropsychiatric, neurophysiological tests, and tests using MRI, fMRI, PET or SPECT as well as blood tests. In summary, it is possible with various methods to detect subtle changes in HD gene carriers 10–20 years before occurrence of motor signs that establish the clinical diagnosis of manifest HD. Interestingly, in a number of studies functional up-regulation in specific brain areas was found in HD gene carriers who were more than 10 years beyond the expected disease onset. So far it is unclear whether this is part of the disease cascade or whether this reflects compensating mechanisms. However, on the basis of these findings the authors suggest to divide the preclinical phase of HD into at least two parts: a very early phase with predominantly up-regulated processes followed by a later phase with predominant deficits in functional investigations compared to controls.
Schlüsselwörter
Huntington - Biomarker - Diagnostik
Keywords
Huntington's disease - Biomarkers - diagnostics
Literatur
-
1 OMIM 143 100: HUNTINGTON DISEASE; HD.
- 2 Przuntek H, Steigerwald A. Epidemiologic study of Huntington disease in the catchment area of the Wurzburg University Neurologic Clinic with special reference to the Lower Franconia district. Nervenarzt. 1987; 58 424-427
- 3 Butterfield D A, Oeswein J Q, Markesbery W R. Electron spin resonance study of membrane protein alterations in erythrocytes in Huntington's disease. Nature. 1977; 267 453-455
- 4 Przuntek H, Kraus P H, Vigenschow H. et al . Electron spin resonance of erythrocytes in Huntington's disease. J Neurol. 1984; 231 162-164
- 5 Kraus P H, Vigenschow H, Przuntek H. Spin label study of red blood cell membranes in Huntington's disease. Eur Neurol. 1986; 25 61-66
- 6 Vigenschow H, Przuntek H, Lawaczeck R. On the exchange of H2O / D2O molecules across membranes of erythrocyte ghosts from patients with Huntington's disease and from normal individuals. J Neurol. 1984; 231 54-55
- 7 Schroeder F, Goetz I E, Roberts E. Membrane anomalies in Huntington's disease fibroblasts. J Neurochem. 1984; 43 526-539
- 8 Gohlich G, Kuhn W, Hohn H. et al . Huntington's disease: biochemical prediction by determination of GABA synthesis of cultured fibroblasts. J Neurol. 1984; 231 50-51
- 9 Gray P N, Dana S L. GABA synthesis by cultured fibroblasts obtained from persons with Huntington's disease. J Neurochem. 1979; 33 985-992
- 10 Hamel E, Goetz I E, Roberts E. Glutamic acid decarboxylase and gamma-aminobutyric acid in Huntington's disease fibroblasts and other cultured cells, determined by a [3H]muscimol radioreceptor assay. J Neurochem. 1981; 37 1032-1038
- 11 Bird E D, Iversen L L. Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline acetyltransferase and dopamine in basal ganglia. Brain. 1974; 97 457-472
- 12 Perry T L, Hansen S, Kloster M. Huntington's chorea. Deficiency of gamma-aminobutyric acid in brain. N Engl J Med. 1973; 288 337-342
- 13 Reynolds G P, Pearson S J. Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington's disease brain. Neurosci Lett. 1987; 78 233-238
- 14 Spokes E G. Neurochemical alterations in Huntington's chorea: a study of post-mortem brain tissue. Brain. 1980; 103 179-210
- 15 Kish S J, Shannak K, Hornykiewicz O. Elevated serotonin and reduced dopamine in subregionally divided Huntington's disease striatum. Ann Neurol. 1987; 22 386-389
- 16 Lange H, Thorner G, Hopf A. et al . Morphometric studies of the neuropathological changes in choreatic diseases. J Neurol Sci. 1976; 28 401-425
- 17 Graveland G A, Williams R S, DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science. 1985; 227 770-773
- 18 Martin J B, Gusella J F. Huntington's disease. Pathogenesis and management. N Engl J Med. 1986; 315 1267-1276
- 19 Seizinger B R, Liebisch D C, Kish S J. et al . Opioid peptides in Huntington's disease: alterations in prodynorphin and proenkephalin system. Brain Res. 1986; 378 405-408
-
20 MacMillan J C, Quarrell O WJ.
The neurobiology of Huntington's disease. In: Harper PS Huntington's disease. Second Edition. London; WP Saunders 1996: 317-357 - 21 Turjanski N, Weeks R, Dolan R. et al . Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study. Brain. 1995; 118 689-696
- 22 Weeks R A, Piccini P, Harding A E. et al . Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's disease. Ann Neurol. 1996; 40 49-54
- 23 Young A B, Greenamyre J T, Hollingsworth Z. et al . NMDA receptor losses in putamen from patients with Huntington's disease. Science. 1988; 241 981-983
- 24 Albin R L, Young A B, Penney J B. et al . Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's disease. N engl J Med. 1990; 322 1293-1298
- 25 Cha J H, Kosinski C M, Kerner J A. et al . Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human huntington disease gene. PNAS (USA). 1998; 95 6480-6485
- 26 Kosinski C M, Cha J H, Young A B. et al . Huntington chorea. Animal models reveal new hypotheses for pathophysiology and therapy. Nervenarzt. 1999; 70 878-888
- 27 Gusella J F, Wexler N S, Conneally P M. et al . A polymorphic DNA marker genetically linked to Huntington's disease. Nature. 1983; 306 234-238
- 28 The Huntington's Disease Collaborative Research Group . A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993; 72 971-983
- 29 Andrich J, Arning L, Wieczorek S. et al . Huntington's disease as caused by 34 CAG repeats. Mov Disord. 2008;
- 30 Semaka A, Creighton S, Warby S. et al . Predictive testing for Huntington disease: interpretation and significance of intermediate alleles. Clin Genet. 2006; 70 283-294
- 31 Nance M A, Myers R H. Juvenile onset Huntington's disease – clinical and research perspectives. Ment Retard Dev Disabil Res Rev. 2001; 7 153-157
- 32 Leeflang E P, Tavare S, Marjoram P. et al . Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Hum Mol Gen. 1999; 8 173-183
- 33 Yoon S R, Dubeau L, deYoung M. et al . Huntington disease expansion mutations in humans can occur before meiosis is completed. PNAS (USA). 2003; 100 8834-8838
- 34 Henley S M, Bates G P, Tabrizi S J. Biomarkers for neurodegenerative diseases. Curr Opin Neurol. 2005; 18 698-705
- 35 Shaw L M, Korecka M, Clark C M. et al . Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov. 2007; 6 295-303
- 36 Huntington Study Group . Unified Huntington's Disease Rating Scale: reliability and consistency. Mov Disord. 1996; 11 136-142
- 37 Siesling S, van Vugt J P, Zwinderman K A. et al . Unified Huntington's disease rating scale: a follow up. Mov Disord. 1998; 13 915-919
- 38 Snowden J S, Craufurd D, Griffiths H L. et al . Awareness of involuntary movements in Huntington disease. Arch Neurol. 1998; 55 801-805
- 39 Hoth K F, Paulsen J S, Moser D J. et al . Patients with Huntington's disease have impaired awareness of cognitive, emotional, and functional abilities. J Clin Exp Neuropsychol. 2007; 29 365-376
- 40 Kirkwood S C, Siemers E, Hodes M E. et al . Subtle changes among presymptomatic carriers of the Huntington's disease gene. J Neurol Neurosurg Psychiatry. 2000; 69 773-779
- 41 de Boo G, Tibben A, Hermans J. et al . Subtle involuntary movements are not reliable indicators of incipient Huntington's disease. Mov Disord. 1998; 13 96-99
- 42 Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960; 23 56-62
- 43 Hogarth P, Kayson E, Kieburtz K. et al . Interrater agreement in the assessment of motor manifestations of Huntington's disease. Mov Disord. 2005; 20 293-297
- 44 Aylward E H. Change in MRI striatal volumes as a biomarker in preclinical Huntington's disease. Brain Res bull. 2007; 72 152-158
- 45 Rosas H D, Feigin A S, Hersch S M. Using advances in neuroimaging to detect, understand, and monitor disease progression in Huntington's disease. NeuroRx. 2004; 1 263-272
- 46 Saft C, Lauter T, Kraus P H. et al . Dose-dependent improvement of myoclonic hyperkinesia due to valproic acid in eight Huntington's disease patients: a case series. BMC Neurology. 2006; 6 11
- 47 Marder K, Zhao H, Myers R H. et al . Rate of functional decline in Huntington's disease. Huntington Study Group. Neurology. 2000; 54 452-458
- 48 Leroi I, Michalon M. Treatment of the psychiatric manifestations of Huntington's disease: a review of the literature. Can J Psychiatry. 1998; 43 933-940
- 49 Folstein S, Abbott M H, Chase G A. et al . The association of affective disorder with Huntington's disease in a case series and in families. Psychol Med. 1983; 13 537-542
- 50 Kirkwood S C, Siemers E, Viken R. et al . Longitudinal personality changes among presymptomatic Huntington disease gene carriers. Neuropsychiatry Neuropsychol Behav Neurol. 2002; 15 192-197
- 51 Craufurd D, Thompson J C, Snowden J S. Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol Behav Neurol. 2001; 14 219-226
- 52 Shiwach R S, Norbury C G. A controlled psychiatric study of individuals at risk for Huntington's disease. Br J Psychiatry. 1994; 165 500-505
- 53 Paulsen J S, Hayden M, Stout J C. et al . Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol. 2006; 63 883-890
- 54 Duff K, Paulsen J S, Beglinger L J. et al . Psychiatric symptoms in Huntington's disease before diagnosis: the predict-HD study. Biol Psychiatry. 2007; 62 1341-1346
- 55 Paulsen J S, Zhao H, Stout J C. et al . Clinical markers of early disease in persons near onset of Huntington's disease. Neurology. 2001; 57 658-662
- 56 Hahn-Barma V, Deweer B, Durr A. et al . Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. J Neurol Neurosurg Psychiatry. 1998; 64 172-177
- 57 Lyle O E, Gottesman I I. Premorbid psychometric indicators of the gene for Huntington's disease. J Consult Clin Psychol. 1977; 45 1011-1022
- 58 Witjes-Ane M N, Mertens B, van Vugt J P. et al . Longitudinal evaluation of „presymptomatic” carriers of Huntington's disease. J Neuropsychiatry Clin Neurosci. 2007; 19 310-317
- 59 Solomon A C, Stout J C, Johnson S A. et al . Verbal episodic memory declines prior to diagnosis in Huntington's disease. Neuropsychologia. 2007; 45 1767-1776
- 60 Lemiere J, Decruyenaere M, Evers-Kiebooms G. et al . Cognitive changes in patients with Huntington's disease (HD) and asymptomatic carriers of the HD mutation – a longitudinal follow-up study. J Neurol. 2004; 251 935-942
- 61 Ho A K, Sahakian B J, Brown R G. et al . Profile of cognitive progression in early Huntington's disease. Neurology. 2003; 61 1702-1706
- 62 Peinemann A, Schuller S, Pohl C. et al . Executive dysfunction in early stages of Huntington's disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci. 2005; 239 11-19
- 63 Kassubek J, Juengling F D, Ecker D. et al . Thalamic atrophy in Huntington's disease co-varies with cognitive performance: a morphometric MRI analysis. Cereb Cortex. 2005; 15 846-853
- 64 Bamford K A, Caine E D, Kido D K. et al . A prospective evaluation of cognitive decline in early Huntington's disease: functional and radiographic correlates. Neurology. 1995; 45 1867-1873
- 65 Bamford K A, Caine E D, Kido D K. et al . Clinical-pathologic correlation in Huntington's disease: a neuropsychological and computed tomography study. Neurology. 1989; 39 796-801
- 66 Harris G J, Aylward E H, Peyser C E. et al . Single photon emission computed tomographic blood flow and magnetic resonance volume imaging of basal ganglia in Huntington's disease. Arch Neurol. 1996; 53 316-324
- 67 Campodonico J R, Aylward E, Codori A M. et al . When does Huntington's disease begin?. J Int Neuropsychol Soc. 1998; 4 467-473
- 68 Jernigan T L, Salmon D P, Butters N. et al . Cerebral structure on MRI, Part II: Specific changes in Alzheimer's and Huntington's diseases. Biol Psychiatry. 1991; 29 68-81
- 69 Snowden J, Craufurd D, Griffiths H. et al . Longitudinal evaluation of cognitive disorder in Huntington's disease. J Int Neuropsychol Soc. 2001; 7 33-44
- 70 Beglinger L J, Nopoulos P C, Jorge R E. et al . White matter volume and cognitive dysfunction in early Huntington's disease. Cogn Behav Neurol. 2005; 18 102-107
- 71 Aylward E H, Anderson N B, Bylsma F W. et al . Frontal lobe volume in patients with Huntington's disease. Neurology. 1998; 50 252-258
- 72 Montoya A, Price B H, Menear M. et al . Brain imaging and cognitive dysfunctions in Huntington's disease. J Psychiatry Neurosci. 2006; 31 21-29
- 73 Feigin A, Ghilardi M F, Huang C. et al . Preclinical Huntington's disease: compensatory brain responses during learning. Ann Neurol. 2006; 59 53-59
- 74 Hasselbalch S G, Oberg G, Sorensen S A. et al . Reduced regional cerebral blood flow in Huntington's disease studied by SPECT. J Neurol Neurosurg Psychiatry. 1992; 55 1018-1023
- 75 Tanahashi N, Meyer J S, Ishikawa Y. et al . Cerebral blood flow and cognitive testing correlate in Huntington's disease. Arch Neurol. 1985; 42 1169-1175
- 76 Berent S, Giordani B, Lehtinen S. et al . Positron emission tomographic scan investigations of Huntington's disease: cerebral metabolic correlates of cognitive function. Ann Neurol. 1988; 23 541-546
- 77 Kuwert T, Lange H W, Langen K J. et al . Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain. 1990; 113 1405-1423
- 78 Brandt J, Folstein S E, Wong D F. et al . D2 receptors in Huntington's disease: positron emission tomography findings and clinical correlates. J Neurol Neurosurg Psychiatry. 1990; 2 20-27
- 79 Backman L, Robins-Wahlin T B, Lundin A. et al . Cognitive deficits in Huntington's disease are predicted by dopaminergic PET markers and brain volumes. Brain. 1997; 120) 2207-2217
- 80 Ginovart N, Lundin A, Farde L. et al . PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington's disease. Brain. 1997; 120 503-514
- 81 Lawrence A D, Weeks R A, Brooks D J. et al . The relationship between striatal dopamine receptor binding and cognitive performance in Huntington's disease. Brain. 1998; 121 1343-1355
- 82 Rosas H D, Salat D H, Lee S Y. et al . Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity. Brain. 2008; 131 1057-1068
- 83 Wolf R C, Sambataro F, Vasic N. et al . Altered frontostriatal coupling in pre-manifest Huntington's disease: effects of increasing cognitive load. Eur J Neurol. 2008; 15 1180-1190
- 84 Wolf R C, Sambataro F, Vasic N. et al . Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington's disease. Exp Neurol. 2008; 213 137-144
- 85 Sax D S, Powsner R, Kim A. et al . Evidence of cortical metabolic dysfunction in early Huntington's disease by single-photon-emission computed tomography. Mov Disord. 1996; 11 671-677
- 86 Wolf R C, Vasic N, Schonfeldt-Lecuona C. et al . Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington's disease: evidence from event-related fMRI. Brain. 2007; 130 2845-2857
- 87 Paulsen J S. Functional imaging in Huntington's disease. Exp Neurol. 2009; 216 272-277
- 88 Brinkman R R, Mezei M M, Theilmann J. et al . The likelihood of being affected with Huntington disease by a particular age, for a specific CAG size. Am J Hum Genet. 1997; 60 1202-1210
- 89 Wexler N S, Lorimer J, Porter J. et al . Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. PNAS (USA). 2004; 101 3498-3503
- 90 Langbehn D R, Brinkman R R, Falush D. et al . A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clin Genet. 2004; 65 267-277
- 91 Harris G J, Codori A M, Lewis R F. et al . Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain. 1999; 122 1667-1678
- 92 Aylward E H, Sparks B F, Field K M. et al . Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology. 2004; 63 66-72
- 93 Ranen N G, Stine O C, Abbott M H. et al . Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet. 1995; 57 593-602
- 94 Andresen J M, Gayan J, Cherny S S. et al . Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds. J Med Genet. 2007; 44 44-50
- 95 Arning L, Monte D, Hansen W. et al . ASK1 and MAP2K6 as modifiers of age at onset in Huntington's disease. J Mol Med. 2008; 86 485-490
- 96 Arning L, Kraus P H, Valentin S. et al . NR2A and NR2B receptor gene variations modify age at onset in Huntington disease. Neurogenetics. 2005; 6 25-28
- 97 Arning L, Saft C, Wieczorek S. et al . NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Hum Gen. 2007; 122 175-182
- 98 Saft C, Andrich J E, Brune N. et al . Apolipoprotein E genotypes do not influence the age of onset in Huntington's disease. J Neurol Neurosurg Psychiatry. 2004; 75 1692-1696
- 99 Weydt P, Soyal S M, Gellera C. et al . The gene coding for PGC-1alpha modifies age at onset in Huntington's Disease. Mol Neurodegener. 2009; 4 3
- 100 Taherzadeh-Fard E, Saft C, Andrich J. et al . PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegener. 2009; 4 10
- 101 Penney Jr J B, Vonsattel J P, MacDonald M E. et al . CAG repeat number governs the development rate of pathology in Huntington's disease. Ann Neurol. 1997; 41 689-692
- 102 Sanchez-Pernaute R, Kunig G, del Barrio Alba A. et al . Bradykinesia in early Huntington's disease. Neurology. 2000; 54 119-125
- 103 Ravina B, Romer M, Constantinescu R. et al . The relationship between CAG repeat length and clinical progression in Huntington's disease. Mov Disord. 2008; 23 1223-1227
- 104 Rosenblatt A, Liang K Y, Zhou H. et al . The association of CAG repeat length with clinical progression in Huntington disease. Neurology. 2006; 66 1016-1020
- 105 Berardelli A, Noth J, Thompson P D. et al . Pathophysiology of chorea and bradykinesia in Huntington's disease. Mov Disord. 1999; 14 398-403
- 106 Noth J, Friedemann H H, Podoll K. et al . Absence of long latency reflexes to imposed finger displacements in patients with Huntington's disease. Neurosci Lett. 1983; 35 97-100
- 107 Noth J, Engel L, Friedemann H H. et al . Evoked potentials in patients with Huntington's disease and their offspring. I. Somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol. 1984; 59 134-141
- 108 Kuwert T, Noth J, Scholz D. et al . Comparison of somatosensory evoked potentials with striatal glucose consumption measured by positron emission tomography in the early diagnosis of Huntington's disease. Mov Disord. 1993; 8 98-106
- 109 Ellenberger Jr C, Petro D J, Ziegler S B. The visually evoked potential in Huntington disease. Neurology. 1978; 28 95-97
- 110 Hennerici M, Homberg V, Lange H W. Evoked potentials in patients with Huntington's disease and their offspring. II. Visual evoked potentials. Electroencephalogr Clin Neurophysiol. 1985; 62 167-176
- 111 Beenen N, Buttner U, Lange H W. The diagnostic value of eye movement recordings in patients with Huntington's disease and their offspring. Electroencephalogr Clin Neurophysiol. 1986; 63 119-127
- 112 Beste C, Saft C, Andrich J. et al . Error processing in Huntington's disease. PLoS ONE. 2006; 1 e86
- 113 Beste C, Saft C, Andrich J. et al . Response inhibition in Huntington's disease – a study using ERPs and sLORETA. Neuropsychologia. 2008; 46 1290-1297
- 114 Beste C, Saft C, Andrich J. et al . Time processing in Huntington's disease: a group-control study. PLoS ONE. 2007; 2 e1263
- 115 Beste C, Saft C, Yordanova J. et al . Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington's disease?. Neuropsychologia. 2007; 45 2922-2930
- 116 Beste C, Saft C, Gunturkun O. et al . Increased cognitive functioning in symptomatic Huntington's disease as revealed by behavioral and event-related potential indices of auditory sensory memory and attention. J Neurosci. 2008; 28 11695-11702
- 117 Hefter H, Homberg V, Lange H W. et al . Impairment of rapid movement in Huntington's disease. Brain. 1987; 110 585-612
- 118 Garcia Ruiz P J, Hernandez J, Cantarero S. et al . Bradykinesia in Huntington's disease. A prospective, follow-up study. J Neurol. 2002; 249 437-440
- 119 van Vugt J P, Piet K K, Vink L J. et al . Objective assessment of motor slowness in Huntington's disease: clinical correlates and 2-year follow-up. Mov Disord. 2004; 19 285-297
- 120 van Vugt J P, Siesling S, Piet K K. et al . Quantitative assessment of daytime motor activity provides a responsive measure of functional decline in patients with Huntington's disease. Mov Disord. 2001; 16 481-488
- 121 Reilmann R, Kirsten F, Quinn L. et al . Objective assessment of progression in Huntington's disease: a 3-year follow-up study. Neurology. 2001; 57 920-924
- 122 Rao A K, Quinn L, Marder K S. Reliability of spatiotemporal gait outcome measures in Huntington's disease. Mov Disord. 2005; 20 1033-1037
- 123 Saft C, Andrich J, Meisel N M. et al . Assessment of complex movements reflects dysfunction in Huntington's disease. J Neurol. 2003; 250 1469-1474
- 124 Saft C, Andrich J, Meisel N M. et al . Assessment of simple movements reflects impairment in Huntington's disease. Mov Disord. 2006; 21 1208-1212
- 125 Saft C, Andrich J, Meisel N M. et al . Congruent deterioration of complex and simple movements in patients with Huntington's disease. J Neural Transm. 2004; 68 97-104
- 126 Andrich J, Saft C, Ostholt N. et al . Assessment of simple movements and progression of Huntington's disease. J Neurol Neurosurg Psychiatry. 2007; 78 405-407
- 127 Andrich J, Saft C, Ostholt N. et al . Complex movement behaviour and progression of Huntington's disease. Neurosci Lett. 2007; 416 272-274
- 128 Hinton S C, Paulsen J S, Hoffmann R G. et al . Motor timing variability increases in preclinical Huntington's disease patients as estimated onset of motor symptoms approaches. J Int Neuropsychol Soc. 2007; 13 539-543
- 129 Michell A W, Goodman A O, Silva A H. et al . Hand tapping: A simple, reproducible, objective marker of motor dysfunction in Huntington's disease. J Neurol. 2008;
- 130 Paulsen J S, Langbehn D R, Stout J C. et al . Detection of Huntington's disease decades before diagnosis: The Predict HD study. J Neurol Neurosurg Psychiatry. 2007;
- 131 Smith M A, Brandt J, Shadmehr R. Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature. 2000; 403 544-549
- 132 Blekher T, Johnson S A, Marshall J. et al . Saccades in presymptomatic and early stages of Huntington disease. Neurology. 2006; 67 394-399
- 133 Hicks S L, Robert M P, Golding C V. et al . Oculomotor deficits indicate the progression of Huntington's disease. Prog Brain Res. 2008; 171 555-558
- 134 Becker W, Jurgens R, Kassubek J. et al . Eye-head coordination in moderately affected Huntington's Disease patients: do head movements facilitate gaze shifts?. Exp Brain Res. 2009; 192 97-112
- 135 Wild E J, Tabrizi S J. Predict-HD and the future of therapeutic trials. Lancet Neurol. 2006; 5 724-725
- 136 Huckman M S, Fox J, Topel J. The validity of criteria for the evaluation of cerebral atrophy by computed tomography. Radiology. 1975; 116 85-92
- 137 Stober T, Wussow W, Schimrigk K. Bicaudate diameter – the most specific and simple CT parameter in the diagnosis of Huntington's disease. Neuroradiology. 1984; 26 25-28
- 138 Aylward E H, Codori A M, Barta P E. et al . Basal ganglia volume and proximity to onset in presymptomatic Huntington disease. Arch Neurol. 1996; 53 1293-1296
- 139 Aylward E H, Codori A M, Rosenblatt A. et al . Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease. Mov Disord. 2000; 15 552-560
- 140 Aylward E H, Brandt J, Codori A M. et al . Reduced basal ganglia volume associated with the gene for Huntington's disease in asymptomatic at-risk persons. Neurology. 1994; 44 823-828
- 141 Kipps C M, Duggins A J, Mahant N. et al . Progression of structural neuropathology in preclinical Huntington's disease: a tensor based morphometry study. J Neurol Neurosurg Psychiatry. 2005; 76 650-655
- 142 Thieben M J, Duggins A J, Good C D. et al . The distribution of structural neuropathology in pre-clinical Huntington's disease. Brain. 2002; 125 1815-1828
- 143 Rosas H D, Hevelone N D, Zaleta A K. et al . Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology. 2005; 65 745-747
- 144 Nopoulos P, Magnotta V A, Mikos A. et al . Morphology of the cerebral cortex in preclinical Huntington's disease. Am J Psychiatry. 2007; 164 1428-1434
- 145 Paulsen J S, Magnotta V A, Mikos A E. et al . Brain structure in preclinical Huntington's disease. Biol Psychiatry. 2006; 59 57-63
- 146 Rosas H D, Tuch D S, Hevelone N D. et al . Diffusion tensor imaging in presymptomatic and early Huntington's disease: Selective white matter pathology and its relationship to clinical measures. Mov Disord. 2006; 21 1317-1325
- 147 Reading S A, Yassa M A, Bakker A. et al . Regional white matter change in pre-symptomatic Huntington's disease: a diffusion tensor imaging study. Psychiatry Res. 2005; 140 55-62
- 148 Kloppel S, Draganski B, Golding C V. et al . White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington's disease. Brain. 2008; 131 196-204
- 149 Kloppel S, Chu C, Tan G C. et al . Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease. Neurology. 2009; 72 426-431
- 150 Aylward E H, Li Q, Stine O C. et al . Longitudinal change in basal ganglia volume in patients with Huntington's disease. Neurology. 1997; 48 394-399
- 151 Brandt J, Bylsma F W, Aylward E H. et al . Impaired source memory in Huntington's disease and its relation to basal ganglia atrophy. J Clin Exp Neuropsychol. 1995; 17 868-877
- 152 Harris G J, Pearlson G D, Peyser C E. et al . Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in mild Huntington's disease. Ann Neurol. 1992; 31 69-75
- 153 Rosas H D, Koroshetz W J, Chen Y I. et al . Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology. 2003; 60 1615-1620
- 154 Ruocco H H, Lopes-Cendes I, Li L M. et al . Striatal and extrastriatal atrophy in Huntington's disease and its relationship with length of the CAG repeat. Brazilian Journal of Medical and Biological Research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 2006; 39 1129-1136
- 155 Starkstein S E, Brandt J, Bylsma F. et al . Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study. Neuroradiology. 1992; 34 487-489
- 156 Bohanna I, Georgiou-Karistianis N, Hannan A J. et al . Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers for Huntington's disease. Brain Res Rev. 2008;
- 157 Muhlau M, Weindl A, Wohlschlager A M. et al . Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex in early Huntington disease. J Neural Transm. 2007; 114 367-372
- 158 Mascalchi M, Lolli F, Della Nave R. et al . Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology. 2004; 232 867-873
- 159 Jech R, Klempir J, Vymazal J. et al . Variation of selective gray and white matter atrophy in Huntington's disease. Mov Disord. 2007; 22 1783-1789
- 160 Vonsattel J P, Myers R H, Stevens T J. et al . Neuropathological classification of Huntington's disease. J Neuropath Exp Neurol. 1985; 44 559-577
- 161 Kassubek J, Juengling F D, Kioschies T. et al . Topography of cerebral atrophy in early Huntington's disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry. 2004; 75 213-220
- 162 Douaud G, Gaura V, Ribeiro M J. et al . Distribution of grey matter atrophy in Huntington's disease patients: a combined ROI-based and voxel-based morphometric study. NeuroImage. 2006; 32 1562-1575
- 163 Muhlau M, Wohlschlager A M, Gaser C. et al . Voxel-based morphometry in individual patients: a pilot study in early Huntington disease. Ajnr. 2009; 30 539-543
- 164 Douaud G, Behrens T E, Poupon C. et al . In vivo evidence for the selective subcortical degeneration in Huntington's disease. NeuroImage. 2009; 46 958-966
- 165 Henley S M, Frost C, MacManus D G. et al . Increased rate of whole-brain atrophy over 6 months in early Huntington disease. Neurology. 2006; 67 694-696
- 166 Henley S M, Wild E J, Hobbs N Z. et al . Whole-brain atrophy as a measure of progression in premanifest and early Huntington's disease. Mov Disord. 2009; 24 932-936
- 167 Kassubek J, Landwehrmeyer G B, Ecker D. et al . Global cerebral atrophy in early stages of Huntington's disease: quantitative MRI study. Neuroreport. 2004; 15 363-365
- 168 Muhlau M, Gaser C, Wohlschlager A M. et al . Striatal gray matter loss in Huntington's disease is leftward biased. Mov Disord. 2007; 22 1169-1173
- 169 Halliday G M, McRitchie D A, Macdonald V. et al . Regional specificity of brain atrophy in Huntington's disease. Exp Neurol. 1998; 154 663-672
- 170 Rosas H D, Liu A K, Hersch S. et al . Regional and progressive thinning of the cortical ribbon in Huntington's disease. Neurology. 2002; 58 695-701
- 171 Seppi K, Schocke M F, Mair K J. et al . Diffusion-weighted imaging in Huntington's disease. Mov Disord. 2006; 21 1043-1047
- 172 Weaver K E, Richards T L, Liang O. et al . Longitudinal diffusion tensor imaging in Huntington's Disease. Exp Neurol. 2009; 216 525-529
- 173 Vandenberghe W, Demaerel P, Dom R. et al . Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic Huntington disease. J Neurol. 2009; 256 109-114
- 174 Alexander G E, DeLong M R, Strick P L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci. 1986; 9 357-381
- 175 Tobin A J, Signer E R. Huntington's disease: the challenge for cell biologists. Trends Cell Biol. 2000; 10 531-536
- 176 Taylor-Robinson S D, Weeks R A, Bryant D J. et al . Proton magnetic resonance spectroscopy in Huntington's disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord. 1996; 11 167-173
- 177 Jenkins B G, Rosas H D, Chen Y C. et al . 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology. 1998; 50 1357-1365
- 178 Martin W R, Wieler M, Hanstock C C. Is brain lactate increased in Huntington's disease?. J Neurol Sci. 2007; 263 70-74
- 179 Harms L, Meierkord H, Timm G. et al . Decreased N-acetyl-aspartate / choline ratio and increased lactate in the frontal lobe of patients with Huntington's disease: a proton magnetic resonance spectroscopy study. J Neurol Neurosurg Psychiatry. 1997; 62 27-30
- 180 Hoang T Q, Bluml S, Dubowitz D J. et al . Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington's and Parkinson's diseases. Neurology. 1998; 50 1033-1040
- 181 Sanchez-Pernaute R, Garcia-Segura J M, del Barrio Alba A. et al . Clinical correlation of striatal 1H MRS changes in Huntington's disease. Neurology. 1999; 53 806-812
- 182 Bender A, Auer D P, Merl T. et al . Creatine supplementation lowers brain glutamate levels in Huntington's disease. J Neurol. 2005; 252 36-41
- 183 Tabrizi S J, Blamire A M, Manners D N. et al . High-dose creatine therapy for Huntington disease: a 2-year clinical and MRS study. Neurology. 2005; 64 1655-1656
- 184 Tabrizi S J, Blamire A M, Manners D N. et al . Creatine therapy for Huntington's disease: clinical and MRS findings in a 1-year pilot study. Neurology. 2003; 61 141-142
- 185 Reynolds Jr N C, Prost R W, Mark L P. Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington's disease. Brain Res. 2005; 1031 82-89
- 186 Lodi R, Schapira A H, Manners D. et al . Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann Neurol. 2000; 48 72-76
- 187 Saft C, Zange J, Andrich J. et al . Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease. Mov Disord. 2005; 20 674-679
- 188 van Oostrom J C, Sijens P E, Roos R A. et al . 1H magnetic resonance spectroscopy in preclinical Huntington disease. Brain Res. 2007; 1168 67-71
- 189 Hennenlotter A, Schroeder U, Erhard P. et al . Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington's disease. Brain. 2004; 127 1446-1453
- 190 Sprengelmeyer R, Young A W, Calder A J. et al . Loss of disgust. Perception of faces and emotions in Huntington's disease. Brain. 1996; 119 1647-1665
- 191 Reading S A, Dziorny A C, Peroutka L A. et al . Functional brain changes in presymptomatic Huntington's disease. Ann Neurol. 2004; 55 879-883
- 192 Paulsen J S, Zimbelman J L, Hinton S C. et al . fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington's disease. AJNR. 2004; 25 1715-1721
- 193 Zimbelman J L, Paulsen J S, Mikos A. et al . fMRI detection of early neural dysfunction in preclinical Huntington's disease. J Int Neuropsychol Soc. 2007; 13 758-769
- 194 Saft C, Schuttke A, Beste C. et al . fMRI reveals altered auditory processing in manifest and premanifest Huntington's disease. Neuropsychologia. 2008; 46 1279-1289
- 195 Aron A R, Schlaghecken F, Fletcher P C. et al . Inhibition of subliminally primed responses is mediated by the caudate and thalamus: evidence from functional MRI and Huntington's disease. Brain. 2003; 126 713-723
- 196 Voermans N C, Petersson K M, Daudey L. et al . Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron. 2004; 43 427-435
- 197 Gavazzi C, Nave R D, Petralli R. et al . Combining functional and structural brain magnetic resonance imaging in Huntington disease. J Comput Assist Tomogr. 2007; 31 574-580
- 198 Dierks T, Linden D E, Hertel A. et al . Multimodal imaging of residual function and compensatory resource allocation in cortical atrophy: a case study of parietal lobe function in a patient with Huntington's disease. Psychiatry Res. 1999; 90 67-75
- 199 Georgiou-Karistianis N, Sritharan A, Farrow M. et al . Increased cortical recruitment in Huntington's disease using a Simon task. Neuropsychologia. 2007; 45 1791-1800
- 200 Clark V P, Lai S, Deckel A W. Altered functional MRI responses in Huntington's disease. Neuroreport. 2002; 13 703-706
- 201 Kim J S, Reading S A, Brashers-Krug T. et al . Functional MRI study of a serial reaction time task in Huntington's disease. Psychiatry Res. 2004; 131 23-30
- 202 Thiruvady D R, Georgiou-Karistianis N, Egan G F. et al . Functional connectivity of the prefrontal cortex in Huntington's disease. J Neurol Neurosurg Psychiatry. 2007; 78 127-133
- 203 Beste C, Schuttke A, Konrad C. et al . Functional Connectivity during auditory processing in Huntington's disease. J Psychphysiol. 2008; 22 195-201
- 204 Saft C, Schutte A, Beste C. et al . Altered auditory sensory processing in premanifest Huntington's disease: Are there different phases in premanifest Huntington's disease?. J Neurol Neurosurg Psychiatry. 2008; 79 A11
- 205 Kuhl D E, Phelps M E, Markham C H. et al . Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed tomographic scan. Ann Neurol. 1982; 12 425-434
- 206 Kuwert T, Ganslandt T, Jansen P. et al . Influence of size of regions of interest on PET evaluation of caudate glucose consumption. J Comput Assist Tomogr. 1992; 16 789-794
- 207 Kuwert T, Lange H W, Boecker H. et al . Striatal glucose consumption in chorea-free subjects at risk of Huntington's disease. J Neurol. 1993; 241 31-36
- 208 Young A B, Penney J B, Starosta-Rubinstein S. et al . PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol. 1986; 20 296-303
- 209 Young A B, Penney J B, Starosta-Rubinstein S. et al . Normal caudate glucose metabolism in persons at risk for Huntington's disease. Arch Neurol. 1987; 44 254-257
- 210 Grafton S T, Mazziotta J C, Pahl J J. et al . Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington's disease. Arch Neurol. 1992; 49 1161-1167
- 211 Hagglund J, Aquilonius S M, Eckernas S A. et al . Dopamine receptor properties in Parkinson's disease and Huntington's chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone. Acta Neurol Scand. 1987; 75 87-94
- 212 Pavese N, Andrews T C, Brooks D J. et al . Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease: a PET study. Brain. 2003; 126 1127-1135
- 213 Antonini A, Leenders K L, Spiegel R. et al . Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease. Brain. 1996; 119 2085-2095
- 214 van Oostrom J C, Maguire R P, Verschuuren-Bemelmans C C. et al . Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology. 2005; 65 941-943
- 215 Bartenstein P, Weindl A, Spiegel S. et al . Central motor processing in Huntington's disease. A PET study. Brain. 1997; 120 1553-1567
- 216 Boecker H, Ceballos-Baumann A, Bartenstein P. et al . Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H(2)(15)O-PET. Brain. 1999; 122 1651-1665
- 217 Pavese N, Gerhard A, Tai Y F. et al . Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology. 2006; 66 1638-1643
- 218 Tai Y F, Pavese N, Gerhard A. et al . Microglial activation in presymptomatic Huntington's disease gene carriers. Brain. 2007; 130 1759-1766
- 219 Feigin A, Tang C, Ma Y. et al . Thalamic metabolism and symptom onset in preclinical Huntington's disease. Brain. 2007; 130 2858-2867
- 220 Borovecki F, Lovrecic L, Zhou J. et al . Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. PNAS (USA). 2005; 102 11023-11028
- 221 Runne H, Kuhn A, Wild E J. et al . Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral blood. PNAS (USA). 2007; 104 14424-14429
- 222 Benn C L, Fox H, Bates G P. Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington's disease. Mol Neurodegener. 2008; 3 17
- 223 Strand A D, Aragaki A K, Shaw D. et al . Gene expression in Huntington's disease skeletal muscle: a potential biomarker. Hum Mol Gen. 2005; 14 1863-1876
- 224 Zabel C, Chamrad D C, Priller J. et al . Alterations in the mouse and human proteome caused by Huntington's disease. Mol Cell Proteomics. 2002; 1 366-375
- 225 Petersen A, Gil J, Maat-Schieman M L. et al . Orexin loss in Huntington's disease. Hum Mol Gen. 2005; 14 39-47
- 226 Bjorkqvist M, Petersen A, Nielsen J. et al . Cerebrospinal fluid levels of orexin – A are not a clinically useful biomarker for Huntington disease. Clin Genet. 2006; 70 78-79
- 227 Aziz N A, van der Burg J M, Landwehrmeyer G B. et al . Weight loss in Huntington disease increases with higher CAG repeat number. Neurology. 2008; 71 1506-1513
- 228 Valenza M, Carroll J B, Leoni V. et al . Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin mutation. Hum Mol Gen. 2007; 16 2187-2198
- 229 Valenza M, Leoni V, Tarditi A. et al . Progressive dysfunction of the cholesterol biosynthesis pathway in the R6 / 2 mouse model of Huntington's disease. Neurobiol Dis. 2007; 28 133-142
- 230 Leoni V, Mariotti C, Tabrizi S J. et al . Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's disease. Brain. 2008; 131 2851-2859
- 231 Tsang T M, Woodman B, McLoughlin G A. et al . Metabolic characterization of the R6 / 2 transgenic mouse model of Huntington's disease by high-resolution MAS 1H NMR spectroscopy. J Proteome Res. 2006; 5 483-492
- 232 Bjorkqvist M, Petersen A, Bacos K. et al . Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6 / 2 transgenic mouse model of Huntington's disease. Hum Mol Gen. 2006; 15 1713-1721
- 233 Aziz N A, Pijl H, Frolich M. et al . Increased hypothalamic-pituitary-adrenal axis activity in Huntington's disease. J Clin Endocrinol Metab. 2009; 94 1223-1228
- 234 Saleh N, Moutereau S, Durr A. et al . Neuroendocrine disturbances in Huntington's disease. PLoS ONE. 2009; 4 e4962
- 235 Politis M, Pavese N, Tai Y F. et al . Hypothalamic involvement in Huntington's disease: an in vivo PET study. Brain. 2008; 131 2860-2869
- 236 Weydt P, Pineda V V, Torrence A E. et al . Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab. 2006; 4 349-362
- 237 Bjorkqvist M, Leavitt B R, Nielsen J E. et al . Cocaine- and amphetamine-regulated transcript is increased in Huntington disease. Mov Disord. 2007; 22 1952-1954
- 238 Mollenhauer B, Bibl M, Esselmann H. et al . Selective reduction of amyloid beta42 discriminates Alzheimer's disease from Huntington's disease: indication for distinct pathological events in amyloid beta peptide aggregation. J Neurol Neurosurg Psychiatry. 2006; 77 1201-1203
- 239 Hamacher M, Stephan C, Hardt T. et al . Applications in brain proteomics: 8(th) HUPO Brain Proteome Project Workshop 7 October 2007, Seoul, Korea. Proteomics. 2008; 8 1750-1753
- 240 Fang Q, Strand A, Law W. et al . Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington disease. Mol Cell Proteomics. 2009; 8 451-466
- 241 Dalrymple A, Wild E J, Joubert R. et al . Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res. 2007; 6 2833-2840
- 242 Leblhuber F, Walli J, Jellinger K. et al . Activated immune system in patients with Huntington's disease. Clin Chem Lab Med. 1998; 36 747-750
- 243 Singhrao S K, Neal J W, Morgan B P. et al . Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp Neurol. 1999; 159 362-376
- 244 Bjorkqvist M, Wild E J, Thiele J. et al . A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med. 2008; 205 1869-1877
- 245 Barrios F A, Gonzalez L, Favila R. et al . Olfaction and neurodegeneration in HD. Neuroreport. 2007; 18 73-76
- 246 Hamacher M, Stephan C, Eisenacher M. et al . Maintaining standardization: an update of the HUPO Brain Proteome Project. Expert Rev Proteomics. 2008; 5 165-173
- 247 Myers T, Law W, Eng J K. et al . Installation and use of the Computational Proteomics Analysis System (CPAS). Current protocols in bioinformatics. 2007; Chapter 13: Unit 13–15
- 248 Luthi-Carter R, Hanson S A, Strand A D. et al . Dysregulation of gene expression in the R6 / 2 model of polyglutamine disease: parallel changes in muscle and brain. Hum Mol Gen. 2002; 11 1911-1926
- 249 Tarditi A, Camurri A, Varani K. et al . Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis. 2006; 23 44-53
- 250 World Federation of Neurology: Research Committee. Research Group on Huntington's chorea. . Ethical issues policy statement on Huntington's disease molecular genetics predictive test. J Neurol Sci. 1989; 94 327-332
- 251 Went L. Ethical issues policy statement on Huntington's disease molecular genetics predictive test. International Huntington Association. World Federation of Neurology. J Med Genet. 1990; 27 34-38
PD Dr. med. Carsten Saft
Neurologische Klinik, Ruhr-Universität Bochum, St. Josef- und St. Elisabeth-Hospital
Gudrunstr. 56
44791 Bochum
Email: carsten.saft@rub.de