Eur J Pediatr Surg 2009; 19(6): 366-369
DOI: 10.1055/s-0029-1234116
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Intestinal Ischemia-reperfusion Injury Causes Activation of Bone Marrow-derived Progenitor Cells

G. Lauriti1 , 2 , M. Cananzi1 , A. Pierro1 , S. Eaton1 , P. de Coppi1
  • 1UCL Institute of Child Health, Paediatric Surgery, London, United Kingdom
  • 2G. D'Annunzio University, Paediatric Surgery, Pescara-Chieti, Italy
Further Information

Publication History

received May 24, 2009

accepted after revision June 30, 2009

Publication Date:
11 December 2009 (online)

Abstract

Introduction: Bone marrow-derived circulating granulocyte and macrophage progenitor cells can contribute to the regeneration of ischemic tissue. Mobilization after heart or brain ischemia is well established, but it is unclear if this occurs after intestinal ischemia-reperfusion injury. Our aim was to evaluate bone marrow granulocyte-macrophage proliferation and the possible beneficial effect of recombinant human granulocyte-colony stimulating factor (rhG-CSF) in a model of intestinal ischemia-reperfusion.

Material and methods: After animal committee approval, anesthetized adult rats were divided into groups (n=4 per group) as follows: (i) control [C], (ii) 60 min intestinal ischemia [I], (iii) 60 min intestinal ischemia+360 min reperfusion [IR], (iv) 420 min sham operation [SH]. At sacrifice, bone marrow was removed, erythrocytes lysed and 1 50 000 nucleated cells plated in triplicate in 35 mm Petri dishes containing methylcellulose (MethoCult®). After 11 days, granulocyte-macrophage colony-forming units (CFU-GM) were counted. In addition, to determine whether rhG-CSF injection stimulates progenitor cell activation, two further groups were studied: (v) 60 min intestinal ischemia+360 min reperfusion with injection of 50 μg/kg rhG-CSF at reperfusion [IR-G]; (vi) 420 min sham with rhG-CSF injected at 60 min [SH-G]. Data are expressed as median, range and IQR and compared using one-way ANOVA with Tukey's post-hoc test.

Results: Neither sham operation nor ischemia alone influenced the activation of bone marrow. However, IR caused a significant increase in bone marrow activation compared to control animals (p<0.01), ischemic animals (p<0.01) and sham operated animals (p<0.05). Administered at a dose of 50 μg/kg, which is commonly used in animal studies, rhG-CSF had no effect on bone marrow activation, and did not augment the effects of ischemia-reperfusion. At a higher dose (100 μg/kg), however, rhG-CSF resulted in the mortality of IR animals.

Conclusions: Intestinal ischemia-reperfusion injury causes proliferation of bone marrow granulocyte-macrophage progenitors which contribute to long-term repair. This phenomenon is not augmented by the administration of exogenous rhG-CSF.

References

  • 1 Akihama S, Sato K, Satoh S. et al . Bone marrow-derived cells mobilized by granulocyte-colony stimulating factor facilitate vascular regeneration in mouse kidney after ischemia/reperfusion injury.  Tohoku J Exp Med. 2007;  213 ((4)) 341-349
  • 2 Anderlini P, Przepiorka D, Champlin R. et al . Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals.  Blood. 1996;  15–88 ((8)) 2819-2825
  • 3 Badami CD, Livingston DH, Sifri ZC. et al . Hematopoietic progenitor cells mobilize to the site of injury after trauma and hemorrhagic shock in rats.  Journal of Trauma-Injury Infection and Critical Care. 2007;  63 ((3)) 596-600
  • 4 Bhatt R, Rameshwar P, Goldstein K. et al . Effects of kindled seizures upon hematopoiesis in rats.  Epilepsy Research. 2003;  54 ((2–3)) 209-219
  • 5 Biffl WL, Moore EE. Splanchnic ischaemia/reperfusion and multiple organ failure.  Br J Anaesth. 1996;  77 ((1)) 59-70
  • 6 Chang YC, Shyu WC, Lin SZ. et al . Regenerative therapy for stroke.  Cell Transplant. 2007;  16 ((2)) 171-181
  • 7 Fan L, Chen L, Chen X. et al . A meta-analysis of stem cell mobilization by granulocyte colony-stimulating factor in the treatment of acute myocardial infarction.  Cardiovasc Drugs Ther. 2008;  22 ((1)) 45-54
  • 8 Fontes B, Moore FA, Moore EE. et al . Gut ischemia induces bone marrow failure and increases risk of infection.  J Surg Res. 1994;  57 ((4)) 505-509
  • 9 Gowing H, Lawler M, Hegenbeek A. et al . Effect of ultraviolet-B light on lymphocyte activity at doses at which normal bone marrow stem cells are preserved.  Blood. 1996;  87 1635-1643
  • 10 Hierholzer C, Kalff JC, Audolfsson G. et al . Molecular and functional contractile sequelae of rat intestinal ischemia/reperfusion injury.  Transplantation. 1999;  68 ((9)) 1244-1254
  • 11 Kang S, Yang Y, Li CJ. et al . Effectiveness and tolerability of administration of granulocyte colony-stimulating factor on left ventricular function in patients with myocardial infarction: a meta-analysis of randomized controlled trials.  Clin Ther. 2007;  29 ((11)) 2406-2418
  • 12 Körbling M, Reuben JM, Gao H. et al . Recombinant human granulocyte-colony-stimulating factor-mobilized and apheresis-collected endothelial progenitor cells: a novel blood cell component for therapeutic vasculogenesis.  Transfusion. 2006;  46 ((10)) 1795-1802
  • 13 Lee KD, Yamataka A, Kato Y. et al . Basic fibroblast growth factor and granulocyte colony-stimulating factor enhance mucosal surface expansion after adult small bowel transplantation without vascular reconstruction in rats.  J Pediatr Surg. 2006;  41 ((4)) 737-741
  • 14 Minnerup J, Heidrich J, Wellmann J. et al . Meta-analysis of the efficacy of granulocyte-colony stimulating factor in animal models of focal cerebral ischemia.  Stroke. 2008;  39 ((6)) 1855-1861
  • 15 Pamphilon D, Nacheva E, Navarrete C. et al . The use of granulocyte-colony-stimulating factor in volunteer unrelated hemopoietic stem cell donors.  Transfusion. 2008;  48 ((7)) 1495-1501
  • 16 Piscaglia AC, Shupe TD, Oh SH. et al . Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats.  Gastroenterology. 2007;  133 ((2)) 619-631
  • 17 Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration.  Nat Med. 2003;  9 ((6)) 702-712
  • 18 Ripa RS, Kastrup J. G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction–a relevant treatment?.  Exp Hematol. 2008;  36 ((6)) 681-686
  • 19 Schoenberg MH, Beger HG. Reperfusion injury after intestinal ischemia.  Crit Care Med. 1993;  21 ((9)) 1376-1386
  • 20 Squadrito F, Altavilla D, Squadrito G. et al . The effects of recombinant human granulocyte-colony stimulating factor on vascular dysfunction and splanchnic ischaemia-reperfusion injury.  Br J Pharmacol. 1997;  120 ((2)) 333-339
  • 21 Stefanutti G, Pierro A, Parkinson EJ. et al . Moderate hypothermia as a rescue therapy against intestinal ischemia and reperfusion injury in the rat.  Crit Care Med. 2008;  36 ((5)) 1564-1572
  • 22 Vejchapipat P, Williams SR, Proctor E. et al . Moderate hypothermia ameliorates liver energy failure after intestinal ischaemia-reperfusion in anaesthetised rats.  J Pediatr Surg. 2001;  36 ((2)) 269-275
  • 23 Wojakowski W, Tendera M, Michałowska A. et al . Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction.  Circulation. 2004;  110 ((20)) 3213-3220

Correspondence

Paolo deCoppi 

Great Ormond Street Hospital

UCL Institute of Child Health

Surgery

30 Guilford Street

London

United Kingdom

WC1N 1EH

Phone: +44(0)2079052641

Fax: +44(0)7954309645

Email: p.decoppi@ich.ucl.ac.uk