Planta Med 2010; 76(11): 1064-1074
DOI: 10.1055/s-0029-1240901
Cancer Therapy
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Inhibition of the Ubiquitin-Proteasome System by Natural Products for Cancer Therapy

Sachiko Tsukamoto1 , Hideyoshi Yokosawa2
  • 1Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
  • 2School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
Further Information

Publication History

received Dec. 19, 2009 revised January 10, 2010

accepted January 22, 2010

Publication Date:
25 February 2010 (online)

Abstract

The ubiquitin-proteasome system plays a critical role in selective protein degradation and regulates almost all cellular events such as cell cycle progression, signal transduction, cell death, immune responses, metabolism, protein quality control, development, and neuronal function. The recent approval of bortezomib, a synthetic proteasome inhibitor, for the treatment of relapsed multiple myeloma has opened the way to the discovery of drugs targeting the proteasome and ubiquitinating and deubiquitinating enzymes as well as the delivery system. To date, various synthetic and natural products have been reported to inhibit the components of the ubiquitin-proteasome system. Here, we review natural products targeting the ubiquitin-proteasome system as well as synthetic compounds with potent inhibitory effects.

References

  • 1 Hershko A, Ciechanover A. The ubiquitin system.  Annu Rev Biochem. 1998;  67 425-479
  • 2 Glickman M H, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction.  Physiol Rev. 2002;  82 373-428
  • 3 Tai H C, Schuman E M. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction.  Nat Rev Neurosci. 2008;  9 826-838
  • 4 Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis.  Annu Rev Biochem. 1999;  68 1015-1068
  • 5 Pickart C M. Mechanisms underlying ubiquitination.  Annu Rev Biochem. 2001;  70 503-533
  • 6 DeMartino G N, Gillette T G. Proteasomes: mechanisms for all reasons.  Cell. 2007;  128 659-662
  • 7 Rock K L, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg A L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules.  Cell. 1994;  78 761-771
  • 8 Adams J. Potential for proteasome inhibition in the treatment of cancer.  Drug Discov Today. 2003;  8 307-315
  • 9 Adams J, Behnke M, Chen S, Cruickshank A A, Dick L R, Grenier L, Klunder J M, Ma Y T, Plamondon L, Stein R L. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids.  Bioorg Med Chem Lett. 1998;  8 333-338
  • 10 Feling R H, Buchanan G O, Mincer T J, Kauffman C A, Jensen P R, Fenical W. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora.  Angew Chem Int Ed. 2003;  42 355-357
  • 11 Sánchez-Serrano I. Success in translational research: lessons from the development of bortezomib.  Nat Rev Drug Discov. 2006;  5 107-114
  • 12 Vinitsky A, Michaud C, Powers J C, Orlowski M. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex.  Biochemistry. 1992;  31 9421-9428
  • 13 Momose I, Sekizawa R, Hashizume H, Kinoshita N, Honma Y, Hamada M, Iinuma H, Takeuchi T. Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. I. Taxonomy, isolation, physico-chemical properties and biological activities.  J Antibiot. 2001;  54 997-1003
  • 14 Momose I, Sekizawa R, Hirosawa S, Ikeda D, Naganawa H, Iinuma H, Takeuchi T. Tyropeptins A and B, new proteasome inhibitors produced by Kitasatospora sp. MK993-dF2. II. Structure determination and synthesis.  J Antibiot. 2001;  54 1004-1012
  • 15 Momose I, Sekizawa R, Iinuma H, Takeuchi T. Inhibition of proteasome activity by tyropeptin A in PC12 cells.  Biosci Biotechnol Biochem. 2002;  66 2256-2258
  • 16 Momose I, Umezawa Y, Hirosawa S, Iinuma H, Ikeda D. Structure-based design of derivatives of tyropeptin A as the potent and selective inhibitors of mammalian 20S proteasome.  Bioorg Med Chem Lett. 2005;  15 1867-1871
  • 17 Shigemori H, Wakuri S, Yazawa K, Nakamura T, Sasaki T, Kobayashi J. Fellutamides A and B, cytotoxic peptides from a marine fish-possessing fungus Penicillium fellutanum.  Tetrahedron. 1991;  47 8529-8534
  • 18 Yamaguchi K, Tsuji T, Wakuri S, Yazawa K, Kondo K, Shigemori H, Kobayashi J. Stimulation of nerve growth factor synthesis and secretion by fellutamide A in vitro.  Biosci Biotechnol Biochem. 1993;  57 195-199
  • 19 Hines J, Groll M, Fahnestock M, Crews C M. Proteasome inhibition by fellutamide B induces nerve growth factor synthesis.  Chem Biol. 2008;  15 501-512
  • 20 Kane R C, Bross P F, Farrell A T, Pazdur R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy.  Oncologist. 2003;  8 508-513
  • 21 Bross P F, Kane R C, Farrell A T, Abraham S, Benson K, Brower M E, Bradley S, Gobburu J V, Goheer A, Lee S L, Leighton J, Liang C Y, Lostritto R T, McGuinn W D, Morse D E, Rahman A, Rosario L A, Verbois S L, Williams G, Wang Y C, Pazdur R. Approval summary for bortezomib for injection in the treatment of multiple myeloma.  Clin Cancer Res. 2004;  10 3954-3964
  • 22 Mitsiades N, Mitsiades C S, Richardson P G, Poulaki V. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications.  Blood. 2003;  101 2377-2380
  • 23 Dorsey B D, Iqbal M, Chatterjee S, Menta E, Bernardini R, Bernareggi A, Cassarà P G, D'Arasmo G, Ferretti E, De Munari S, Oliva A, Pezzoni G, Allievi C, Strepponi I, Ruggeri B, Ator M A, Williams M, Mallamo J P. Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer.  J Med Chem. 2008;  51 1068-1072
  • 24 Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D, Giai V, Coscia M, Peola S, Massaia M, Pezzoni G, Allievi C, Pescalli N, Cassin M, di Giovine S, Nicoli P, de Feudis P, Strepponi I, Roato I, Ferracini R, Bussolati B, Camussi G, Jones-Bolin S, Hunter K, Zhao H, Neri A, Palumbo A, Berkers C, Ovaa H, Bernareggi A, Inghirami G. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib.  Blood. 2008;  111 2765-2775
  • 25 Sanchez E, Li M, Steinberg J A, Wang C, Shen J, Bonavida B, Li Z W, Chen H, Berenson J R. The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan.  Br J Haematol. 2009;  148 569-581
  • 26 Ōmura S, Fujimoto T, Otoguro K, Matsuzaki K, Moriguchi R, Tanaka H, Sasaki Y. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells.  J Antibiot. 1991;  44 113-116
  • 27 Ōmura S, Matsuzaki K, Fujimoto T, Kosuge K, Furuya T, Fujita S, Nakagawa A. Structure of lactacystin, a new microbial metabolite which induces differentiation of neuroblastoma cells.  J Antibiot. 1991;  44 117-118
  • 28 Fenteany G, Standaert R F, Reichard G A, Corey E J, Schreiber S L. A β-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line.  Proc Natl Acad Sci USA. 1994;  91 3358-3362
  • 29 Dick L R, Cruikshank A A, Grenier L, Melandri F D, Nunes S L, Stein R L. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin β-lactone.  J Biol Chem. 1996;  271 7273-7276
  • 30 Fenteany G, Standaert R F, Lane W S, Choi S, Corey E J, Schreiber S L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin.  Science. 1995;  268 726-731
  • 31 Elliott P J, Zollner T M, Boehncke W H. Proteasome inhibition: a new anti-inflammatory strategy.  J Mol Med. 2003;  115 235-245
  • 32 Macherla V R, Mitchell S S, Manam R R, Reed K A, Chao T H, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen P R, Fenical W F, Neuteboom S T C, Lam K S, Palladino M A, Potts B C M. Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor.  J Med Chem. 2005;  48 3684-3687
  • 33 Williams P G, Buchanan G O, Feling R H, Kauffman C A, Jensen P R, Fenical W. New cytotoxic salinosporamides from the marine actinomycete Salinispora tropica.  J Org Chem. 2005;  70 6196-6203
  • 34 Reddy L R, Fournier J F, Reddy B V S, Corey E J. An efficient, stereocontrolled synthesis of a potent omuralide-salinosporin hybrid for selective proteasome inhibition.  J Am Chem Soc. 2005;  127 8974-8976
  • 35 Manam R R, Macherla V R, Tsueng G, Dring C W, Weiss J, Neuteboom S T C, Lam K C, Potts B C. Antiprotealide is a natural product.  J Nat Prod. 2009;  72 295-297
  • 36 Eustáquio A S, Moore B S. Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome.  Angew Chem Int Ed. 2008;  47 3936-3938
  • 37 Stadler M, Bitzer J, Mayer-Bartschmid A, Müller H, Benet-Buchholz J, Gantner F, Tichy H V, Reinemer P, Bacon K B. Cinnabaramides A–G: analogues of lactacystin and salinosporamide from a terrestrial streptomycete.  J Nat Prod. 2007;  70 246-252
  • 38 Groll M, Berkers C R, Ploegh H L, Ovaa H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome.  Cancer Cell. 2006;  14 451-456
  • 39 Berkers C R, Verdoes M, Lichtman E, Fiebiger E, Kessler B M, Anderson K C, Ploegh H L, Ovaa H, Galardy P J. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib.  Nat Methods. 2005;  2 357-362
  • 40 Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Nicholson B, Chao T H, Neuteboom S T, Richardson P, Palladino M A, Anderson K C. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib.  Cancer Cell. 2005;  8 407-419
  • 41 Anderson K C. Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions.  Exp Hematol. 2007;  35 155-162
  • 42 Chauhan D, Hideshima T, Anderson K C. A novel proteasome inhibitor NPI-0052 as an anticancer therapy.  Br J Cancer. 2006;  95 961-965
  • 43 Ruiz S, Krupnik Y, Keating M, Chandra J, Palladino M, McConkey D. The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia.  Mol Cancer Ther. 2006;  5 1836-1843
  • 44 Miller C P, Ban K, Dujka M E, McConkey D J, Munsell M, Palladino M, Chandra J. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells.  Blood. 2007;  110 267-277
  • 45 Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P, Munshi N, Palladino M A, Anderson K C. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma.  Blood. 2008;  111 1654-1664
  • 46 Chauhan D, Singh A V, Ciccarelli B, Richardson P G, Palladino M A, Anderson K C. Combination of novel proteasome inhibitor NPI-0052 and lenalidomide trigger in vitro and in vivo synergistic cytotoxicity in multiple myeloma.  Blood. 2010;  115 834-845
  • 47 Fenical W, Jensen P R, Palladino M A, Lam K S, Lloyd G K, Potts B C. Discovery and development of the anticancer agent salinosporamide A (NPI-0052).  Bioorg Med Chem. 2009;  17 2175-2180
  • 48 Asai A, Hasegawa A, Ochiai K, Yamashita Y, Mizukami T. Belactosin A, a novel antitumor antibiotic acting on cyclin/CDK mediated cell cycle regulation, produced by Streptomyces sp.  J Antibiot. 2000;  53 81-83
  • 49 Asai A, Tsujita T, Sharma S V, Yamashita Y, Akinaga S, Funakoshi M, Kobayashi H, Mizukami T. A new structural class of proteasome inhibitors identified by microbial screening using yeast-based assay.  Biochem Pharmacol. 2004;  67 227-234
  • 50 Yoshida K, Yamaguchi K, Sone T, Unno Y, Asai A, Yokosawa H, Matsuda A, Arisawa M, Shuto S. Synthesis of 2,3- and 3,4-methanoamino acid equivalents with stereochemical diversity and their conversion into the tripeptide proteasome inhibitor belactosin A and its highly potent cis-cyclopropane stereoisomer.  Org Lett. 2008;  10 3571-3574
  • 51 Groll M, Larionov O V, Huber R, de Meijere A. Inhibitor-binding mode of homobelactosin C to proteasomes: new insights into class I MHC ligand generation.  Proc Natl Acad Sci USA. 2006;  103 4576-4579
  • 52 Nakamura H, Watanabe M, Ban H S, Nabeyama W, Asai A. Synthesis and biological evaluation of boron peptide analogues of belactosin C as proteasome inhibitors.  Bioorg Med Chem Lett. 2009;  19 3220-3224
  • 53 Yoshida K, Yamaguchi K, Mizuno A, Unno Y, Asai A, Sone T, Yokosawa H, Matsuda A, Arisawa M, Shuto S. Three-dimensional structure-activity relationship study of belactosin A and its stereo- and regioisomers: development of potent proteasome inhibitors by a stereochemical diversity-oriented strategy.  Org Biomol Chem. 2009;  7 1868-1877
  • 54 Hanada M, Sugawara K, Kaneta K, Toda S, Nishiyama Y, Tomita K, Yamamoto H, Konishi M, Oki T. Epoxomicin, a new antitumor agent of microbial origin.  J Antibiot. 1992;  45 1746-1752
  • 55 Groll M, Kim K B, Kairies N, Huber R, Crews C M. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of α′,β′-epoxyketone proteasome inhibitors.  J Am Chem Soc. 2000;  122 1237-1238
  • 56 Goy A, Younes A, McLaughlin P, Pro B, Romaguera J E, Hagemeister F, Fayad L, Dang N H, Samaniego F, Wang M, Broglio K, Samuels B, Gilles F, Sarris A H, Hart S, Trehu E, Schenkein D, Cabanillas F, Rodriguez A M. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma.  J Clin Oncol. 2005;  23 667-675
  • 57 Kuhn D J, Chen Q, Voorhees P M, Strader J S, Shenk K D, Sun C M, Demo S D, Bennett M K, van Leeuwen F W, Chanan-Khan A A, Orlowski R Z. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma.  Blood. 2007;  110 3281-3290
  • 58 Parlati F, Lee S J, Aujay M, Suzuki E, Levitsky K, Lorens J B, Micklem D R, Ruurs P, Sylvain C, Lu Y, Shenk K D, Bennett M K. Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome.  Blood. 2009;  114 3439-3447
  • 59 O'Connor O A, Stewart A K, Vallone M, Molineaux C J, Kunkel L A, Gerecitano J F, Orlowski R Z. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies.  Clin Cancer Res. 2009;  15 7085-7091
  • 60 Wäspi U, Blanc D, Winkler T, Rüedi P, Dudler R. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice.  Mol Plant Microbe Interact. 1998;  11 727-733
  • 61 Groll M, Schellenberg B, Bachmann A S, Archer C R, Huber R, Powell T K, Lindow S, Kaiser M, Dudler R. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism.  Nature. 2008;  452 755-759
  • 62 Clerc J, Groll M, Illich D J, Bachmann A S, Huber R, Schellenberg B, Dudler R, Kaiser M. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition.  Proc Natl Acad Sci USA. 2009;  106 6507-6512
  • 63 Clerc J, Florea B I, Kraus M, Groll M, Huber R, Bachmann A S, Dudler R, Driessen C, Overkleeft H S, Kaiser M. Syringolin A selectively labels the 20S proteasome in murine EL4 and wild-type and bortezomib-adapted leukaemic cell lines.  ChemBioChem. 2009;  10 2638-2643
  • 64 Amrein H, Makart S, Granado J, Shakya R, Schneider-Pokorny J, Dudler R. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D–R.  Mol Plant Microbe Interact. 2004;  17 90-97
  • 65 Koguchi Y, Kohno J, Nishio M, Takahashi K, Okuda T, Ohnuki T, Komatsubara S. TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093.  J Antibiot. 2000;  53 105-109
  • 66 Kohno J, Koguchi Y, Nishio M, Nakao K, Kuroda M, Shimizu R, Ohnuki T, Komatsubara S. Structures of TMC-95A−D: novel proteasome inhibitors from Apiospora montagnei Sacc. TC 1093.  J Org Chem. 2000;  65 990-995
  • 67 Groll M, Koguchi Y, Huber R, Kohno J. Crystal structure of the 20S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor.  J Mol Biol. 2001;  311 543-548
  • 68 Groll M, Götz M, Kaiser M, Weyher E, Moroder L. TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome.  Chem Biol. 2006;  13 607-614
  • 69 Inoue M, Zhai H, Sakazaki H, Furuyama H, Fukuyama Y, Hirama M. TMC-95A, a reversible proteasome inhibitor, induces neurite outgrowth in PC12 cells.  Bioorg Med Chem Lett. 2004;  14 663-665
  • 70 Sasse F, Steinmetz H, Schupp T, Petersen F, Memmert K, Hofmann H, Heusser C, Brinkmann V, von Matt P, Höfle G, Reichenbach H. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physico-chemical and biological properties.  J Antibiot. 2002;  55 543-551
  • 71 Nickeleit I, Zender S, Sasse F, Geffers R, Brandes G, Sörensen I, Steinmetz H, Kubicka S, Carlomagno T, Menche D, Gütgemann I, Buer J, Gossler A, Manns M P, Kalesse M, Frank R, Malek N P. Argyrin A reveals a critical role for the tumor suppressor protein p 27kip1 in mediating antitumor activities in response to proteasome inhibition.  Cancer Cell. 2008;  14 23-35
  • 72 Pahl H L, Krauss B, Schulze-Osthoff K, Decker T, Traenckner E B- M, Vogt M, Myers C, Parks T, Warring P, Muhlbacher A, Czernilofsky A-P, Baeuerle P A. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-κB.  J Exp Med. 1996;  183 1829-1840
  • 73 Kroll M, Arenzana-Seisdedos F, Bacheelerie F, Thomas D, Friguet B, Conconi M. The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome.  Chem Biol. 1999;  6 689-698
  • 74 Tsukamoto S, Tatsuno M, van Soest R W M, Yokosawa H, Ohta T. New polyhydroxy sterols: proteasome inhibitors from a marine sponge Acanthodendrilla sp.  J Nat Prod. 2003;  66 1181-1185
  • 75 Aoki S, Yoshioka Y, Miyamoto Y, Higuchi K, Setiawan A, Murakami N, Chen Z-S, Sumizawa T, Akiyama S, Kobayashi M. Agosterol A, a novel polyhydroxylated sterol acetate reversing multidrug resistance from a marine sponge of Spongia sp.  Tetrahedron Lett. 1998;  39 6303-6306
  • 76 Aoki S, Setiawan A, Yoshioka Y, Higuchi K, Fudetani R, Chen Z-S, Sumizawa T, Akiyama S, Kobayashi M. Reversal of multidrug resistance in human carcinoma cell line by agosterols, marine spongean sterols.  Tetrahedron. 1999;  55 13965-13972
  • 77 Tsukamoto S, Koimaru K, Ohta T. Secomycalolide A: a new proteasome inhibitor isolated from a marine sponge of the genus Mycale.  Mar Drugs. 2005;  3 29-36
  • 78 Su B N, Hwang B Y, Chai H, Carcache-Blanco E J, Kardono L B S, Afriastini J J, Riswan S, Wild R, Laing N, Farnsworth N R, Cordell G A, Swanson S M, Kinghorn A D. Activity-guided fractionation of the leaves of Ormosia sumatrana using a proteasome inhibition assay.  J Nat Prod. 2004;  67 1911-1914
  • 79 Milacic V, Banerjee S, Landis-Piwowar K R, Sarkar F H, Majumdar A P, Dou Q P. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo.  Cancer Res. 2008;  68 7283-7292
  • 80 Chen D, Daniel K G, Chen M S, Kuhn D J, Landis-Piwowar K R, Dou Q P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells.  Biochem Pharmacol. 2005;  69 1421-1432
  • 81 Kazi A, Daniel K G, Smith D M, Kumar N B, Dou Q P. Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein.  Biochem Pharmacol. 2003;  66 965-976
  • 82 Wan S B, Landis-Piwowar K R, Kuhn D J, Chen D, Dou Q P, Chan T H. Structure-activity study of epi-gallocatechin gallate (EGCG) analogs as proteasome inhibitors.  Bioorg Med Chem. 2005;  13 2177-2185
  • 83 Yang H, Shi G, Dou Q P. The tumor proteasome is a primary target for the natural anticancer compound withaferin A isolated from “Indian Winter Cherry”.  Mol Pharmacol. 2007;  71 426-437
  • 84 Yang H, Chen D, Cui Q C, Yuan X, Dou Q P. Celastrol, a triterpene extracted from the Chinese “Thunder of God Vine,” is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice.  Cancer Res. 2006;  66 4758-4765
  • 85 Petroski M D, Deshaies R J. Function and regulation of cullin-RING ubiquitin ligases.  Nat Rev Mol Cell Biol. 2005;  6 9-20
  • 86 Bernassola F, Karin M, Ciechanover A, Melino G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development.  Cancer Cell. 2008;  14 10-21
  • 87 Vassilev L T. MDM2 inhibitors for cancer therapy.  Trends Mol Med. 2007;  13 23-31
  • 88 Vazquez A, Bond E E, Levine A J, Bond G L. The genetics of the p 53 pathway, apoptosis and cancer therapy.  Nat Rev Drug Discov. 2008;  7 979-987
  • 89 Vassilev L T, Vu B T, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu E A. In vivo activation of the p 53 pathway by small-molecule antagonists of MDM2.  Science. 2004;  303 844-848
  • 90 Ooi M G, Hayden P J, Kotoula V, McMillin D W, Charalambous E, Daskalaki E, Raje N S, Munshi N C, Chauhan D, Hideshima T, Buon L, Clynes M, O'Gorman P, Richardson P G, Mitsiades C S, Anderson K C, Mitsiades N. Interactions of the Hdm2/p 53 and proteasome pathways may enhance the antitumor activity of bortezomib.  Clin Cancer Res. 2009;  15 7153-7160
  • 91 Duncan S J, Grüschow S, Williams D H, McNicholas C, Purewal R, Hajek M, Gerlitz M, Martin S, Wrigley S K, Moore M. Isolation and structure elucidation of chlorofusin, a novel p 53-MDM2 antagonist from a Fusarium sp.  J Am Chem Soc. 2001;  123 554-560
  • 92 Qian W J, Wei W G, Zhang Y X, Yao Z J. Total synthesis, assignment of absolute stereochemistry, and structural revision of chlorofusin.  J Am Chem Soc. 2007;  129 6400-6401
  • 93 Lee S Y, Clark R C, Boger D L. Total synthesis, stereochemical reassignment, and absolute configuration of chlorofusin.  J Am Chem Soc. 2007;  129 9860-9861
  • 94 Clark R C, Lee S Y, Boger D L. Total synthesis of chlorofusin, its seven chromophore diastereomers, and key partial structures.  J Am Chem Soc. 2008;  130 12355-12369
  • 95 Duncan S J, Williams D H, Ainsworth M, Martin S, Ford R, Wrigley S K. On the biosynthesis of an inhibitor of the p 53/MDM2 interaction.  Tetrahedron Lett. 2002;  43 1075-1078
  • 96 Tsukamoto S, Yoshida T, Hosono H, Ohta T, Yokosawa H. Hexylitaconic acid: a new inhibitor of p 53-HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp.  Bioorg Med Chem Lett. 2006;  16 69-71
  • 97 Nakahashi A, Miura N, Monde K, Tsukamoto S. Stereochemical studies of hexylitaconic acid, an inhibitor of p 53-HDM2 interaction.  Bioorg Med Chem Lett. 2009;  19 3027-3030
  • 98 Stoll R, Renner C, Hansen S, Palme S, Klein C, Belling A, Zeslawski W, Kamionka M, Rehm T, Mühlhahn P, Schumacher R, Hesse F, Kaluza B, Voelter W, Engh R A, Holak T A. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p 53.  Biochemistry. 2001;  40 336-344
  • 99 Devicenzo R, Scambia G, Panici P B, Ranelletti F O, Bonanno G, Ercoli A, Dellemonache F, Ferrari F, Piantelli M, Mancuso S. Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: structure-activity relationships.  Anticancer Drug Des. 1995;  10 481-490
  • 100 Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef L G, Masucci M, Pramanik A, Selivanova G. Small molecule RITA binds to p 53, blocks p 53-HDM-2 interaction and activates p 53 function in tumors.  Nat Med. 2004;  10 1321-1328
  • 101 Sekizawa R, Ikeno S, Nakamura H, Naganawa H, Matsui S, Iinuma H, Takeuchi T. Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme.  J Nat Prod. 2002;  65 1491-1493
  • 102 Tsukamoto S, Hirota H, Imachi M, Fujimuro M, Onuki H, Ohta T, Yokosawa H. Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp.  Bioorg Med Chem Lett. 2005;  15 191-194
  • 103 Yang Y, Kitagaki J, Dai R M, Tsai Y C, Lorick K L, Ludwig R L, Pierre S A, Jensen J P, Davydov I V, Oberoi P, Li C C, Kenten J H, Beutler J A, Vousden K H, Weissman A M. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics.  Cancer Res. 2007;  67 9472-9481
  • 104 Pickart C M, Fushman D. Polyubiquitin chains: polymeric protein signals.  Curr Opin Chem Biol. 2004;  8 610-616
  • 105 Sun L, Chen Z J. The novel functions of ubiquitination in signaling.  Curr Opin Cell Biol. 2004;  16 119-126
  • 106 Li W, Ye Y. Polyubiquitin chains: functions, structures, and mechanisms.  Cell Mol Life Sci. 2008;  65 2397-2406
  • 107 Andersen P L, Zhou H, Pastushock L, Moraes T, McKenna S, Ziola B, Ellison M J, Dixit V M, Xiao W. Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A.  J Cell Biol. 2005;  170 745-755
  • 108 Laine A, Topisirovic I, Zhai D, Reed J C, Borden K L B, Ronai Z. Regulation of p 53 localization and activity by Ubc13.  Mol Cell Biol. 2006;  26 8901-8913
  • 109 Tsukamoto S, Takeuchi T, Rotinsulu H, Mangindaan R E P, van Soest R W M, Ukai K, Kobayashi H, Namikoshi M, Ohta T, Yokosawa H. Leucettamol A: a new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, Leucetta aff. microrhaphis.  Bioorg Med Chem Lett. 2008;  18 6319-6320
  • 110 Kong F, Faulkner D J. Leucettamols A and B, two antimicrobial lipids from the calcareous sponge Leucetta microraphis.  J Org Chem. 1993;  58 970-971
  • 111 Dailisay D S, Tsukamoto S, Molinski T F. Absolute configuration of the α,ω-bifunctionalized sphingolipid leucettamol A from Leucetta sp. by deconvoluted exciton coupled CD.  J Nat Prod. 2009;  72 353-359
  • 112 Topisirovic I, Gutierrez G J, Chen M, Appella E, Borden K L B, Ronai Z A. Control of p 53 multimerization by Ubc13 is JNK-regulated.  Proc Natl Acad Sci USA. 2009;  106 12676-12681
  • 113 Deveraux Q, van Nocker S, Mahaffey D, Vierstra R, Rechsteiner M. Inhibition of ubiquitin-mediated proteolysis by the Arabidopsis 26S protease subunit S5a.  J Biol Chem. 1995;  270 29660-29663
  • 114 Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters K J, Finley D, Dikic I. Proteasome subunit Rpn13 is a novel ubiquitin receptor.  Nature. 2008;  453 481-488
  • 115 Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, Finley D, Dikic I, Walters K J, Groll M. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.  Nature. 2008;  453 548-552
  • 116 Elsasser S, Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines.  Nat Cell Biol. 2005;  7 742-749
  • 117 Verma R, Oania R, Graumann J, Deshaies R J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system.  Cell. 2004;  118 99-110
  • 118 Lavelle F, Zerial A, Fizames C, Rabault B, Curaudeau A. Antitumor activity and mechanism of action of the marine compound girodazole.  Invest New Drugs. 1991;  9 233-244
  • 119 Tsukamoto S, Yamashita K, Tane K, Kizu R, Ohta T, Matsunaga S, Fusetani N, Kawahara H, Yokosawa H. Girolline, an antitumor compound isolated from a sponge, induces G2/M cell cycle arrest and accumulation of polyubiquitinated p 53.  Biol Pharm Bull. 2004;  27 699-701
  • 120 Verma R, Peters N R, D'Onofrio M, Tochtrop G P, Sakamoto K M, Varadan R, Zhang M, Coffino P, Fushman D, Deshaies R J, King R W. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain.  Science. 2004;  306 117-120
  • 121 Guterman A, Glickman M H. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome.  J Biol Chem. 2004;  279 1729-1738
  • 122 Komander D, Clague M J, Urbe S. Breaking the chains: structure and function of the deubiquitinases.  Nat Rev Mol Cell Biol. 2009;  10 550-563
  • 123 Mullally J E, Moos P J, Edes K, Fitzpatrick F A. Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway.  J Biol Chem. 2001;  276 30366-30373
  • 124 Verbitski S M, Mullally J E, Fitzpatrick F A, Ireland C M. Punaglandins, chlorinated prostaglandins, function as potent Michael receptors to inhibit ubiquitin isopeptidase activity.  J Med Chem. 2004;  47 2062-2070
  • 125 Colland F, Formstecher E, Jacq X, Reverdy C, Planquette C, Conrath S, Trouplin V, Bianchi J, Aushev V N, Camonis J, Calabrese A, Borg-Capra C, Sippl W, Collura V, Boissy G, Rain J C, Guedat P, Delansorne R, Daviet L. Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p 53 in cells.  Mol Cancer Ther. 2009;  8 2286-2295
  • 126 Milano A, Iaffaioli R V, Caponigro F. The proteasome: a worthwhile target for the treatment of solid tumours?.  Eur J Cancer. 2007;  43 1125-1133

Prof. Ph.D. Sachiko Tsukamoto

Graduate School of Pharmaceutical Sciences
Kumamoto University

5–1 Oe-honmachi

862–0973 Kumamoto

Japan

Phone: + 81 9 63 71 43 80

Fax: + 81 9 63 62 77 99

Email: sachiko@kumamoto-u.ac.jp