RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245277
© Georg Thieme Verlag KG Stuttgart · New York
MR Imaging of Lymph Nodes using Gadofluorine M: Feasibility in a Swine Model at 1.5 and 3T
MR-Bildgebung von Lymphknoten mit Gadofluorine M in einem Schweinemodell bei 1,5 and 3TPublikationsverlauf
received: 8.11.2009
accepted: 8.2.2010
Publikationsdatum:
23. April 2010 (online)
Zusammenfassung
Ziel: Untersuchung von Gadofluorine M für die MR-Bildgebung von Lymphknoten (LK) in einem Großtiermodel bei 1,5 und 3 T. Material und Methoden: Es wurden sowohl die pelvinen als auch die zervikalen Lymphknotenstationen in einem Schweinemodell vor als auch 24 h nach intravenöser Gabe von 50 µmol/kgKG des Kontrastmittels Gadofluorine M (experimentelles Kontrastmittel) untersucht. Als MR-Sequenzen dienten klinisch einsetzbare T 1-gewichtete Sequenzen, welche sowohl bei 1,5 als auch bei 3 T eingesetzt wurden. Das Signal-zu-Rauschen-Verhältnis und das Kontrast-zu-Rauschen-Verhältnis im Vergleich zum umliegenden Gewebe wurden bestimmt und mit dem Stundents-t-Test verglichen. Post mortem wurde in 43 explantierten Lymphknoten die Gd-Konzentration bestimmt. Ergebnisse: Nach Gabe von Gadofluorine M zeigten alle Lymphknoten eine deutlich gesteigerte Signalintensität mit hohem Kontrast zum umliegenden Gewebe (SNRpelvineLKs post vs. pre: 46 ± 7 vs. 14 ± 3, SNRcervicaleLKs post vs. pre: 105 ± 64 vs. 32 ± 21; CNRpelvineLKs vs. Muskel post vs. pre 28 ± 5 vs. 0.2 ± 0.5, CNRcervicaleLKs vs. Muskel post vs. pre 76 ± 53 vs. 11 ± 15, p < 0,05 für alle Vergleiche). SNR und CNR der pelvinen LKs war bei 3 T höher im Vergleich zu 1,5 T (SNR LKs 3 T vs. 1,5 T 84 ± 6 vs. 46 ± 7, CNR LKs vs. Muskel 3 T vs. 1,5 T 53 ± 9 vs. 28 ± 5; p < 0,05). In allen Lymphknoten wurde eine hohe Akkumulation von Gd nachgewiesen (149 ± 25 µmol Gd/L). Schlussfolgerung: Gadofluorine M akkumuliert in Lymphknoten. Dieses erlaubt die selektive Darstellung von Lymphknoten mit hohem Kontrast in einem Großtiermodell, wobei klinisch verwendbare MR-Sequenzen eingesetzt werden können. 3 T verbessert sowohl das SNR als auch das CNR im Vergleich zu 1,5 T.
Abstract
Purpose: To investigate the potential of Gadofluorine M for targeted lymph node imaging in a human size animal model and on a clinical MR scanner at 1.5 and 3 T. Materials and Methods: Pelvic and cervical lymph nodes in a swine model were investigated prior to and 24 hours after intravenous administration of 50 µmol/kg body weight Gadofluorine M, an experimental contrast agent. MR imaging was carried out on clinical 1.5 T and 3 T whole-body MR systems using clinically available coils and T 1-weighted sequences. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) with respect to the surrounding tissue were assessed and compared using the Student’s t-test. The Gd concentration in the lymph nodes (n = 43) was measured post mortem by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). Results: Gadofluorine M allowed for high signal and high contrast visualization of lymph nodes in all stations on post-contrast images with a significantly increased SNR and CNR (SNR pelvic lymph nodes post vs. pre: 46 ± 7 vs.14 ± 3, SNR cervical lymph nodes post vs. pre: 105 ± 64 vs. 32 ± 21; CNR pelvic lymph node vs. muscle post vs. pre 28 ± 5 vs. 0.2 ± 0.5, CNR cervical lymph node vs. muscle post vs. pre 76 ± 53 vs. 11 ± 15, p < 0.05 for all comparisons). The SNR and CNR in the pelvis were further improved using 3 T compared to 1.5 T scanners (SNR lymph nodes 3 T vs. 1.5 T 84 ± 6 vs. 46 ± 7, CNR lymph node vs. muscle 3 T vs. 1.5 T 53 ± 9 vs. 28 ± 5 respectively, p < 0.05). A high concentration of Gd in the lymph nodes was found (149 ± 25 mmol Gd/L). Conclusion: Gadofluorine M accumulates in the lymph nodes and allows for selective targeted high contrast MR imaging of lymph node tissue in a large animal model using clinically available MR imaging techniques. 3 T further improves SNR and CNR compared to 1.5 T.
Key words
lymphatic - lymphography - MR imaging - animal investigations - contrast agents - molecular imaging
References
- 1 Ruehm S G, Schroeder T, Debatin J F. Interstitial MR lymphography with gadoterate meglumine: initial experience in humans. Radiology. 2001; 220 816-821
- 2 Staatz G, Nolte-Ernsting C C, Adam G B. et al . Interstitial T 1-weighted MR lymphography: lipophilic perfluorinated gadolinium chelates in pigs. Radiology. 2001; 220 129-134
- 3 Misselwitz B. MR contrast agents in lymph node imaging. Eur J Radiol. 2006; 58 375-382
- 4 Suga K, Yuan Y, Ogasawara N. et al . Localization of breast sentinel lymph nodes by MR lymphography with a conventional gadolinium contrast agent. Preliminary observations in dogs and humans. Acta Radiol. 2003; 44 35-42
- 5 Staatz G, Spuntrup E, Buecker A. et al . T1-weighted MR-lymphography after intramammary administration of Gadomer-17 in pigs. Fortschr Röntgenstr. 2002; 174 29-32
- 6 Wunderbaldinger P. Problems and prospects of modern lymph node imaging. Eur J Radiol. 2006; 58 325-337
- 7 Weissleder R, Elizondo G, Wittenberg J. et al . Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990; 175 489-493
- 8 Harisinghani M G, Barentsz J, Hahn P F. et al . Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003; 348 2491-2499
- 9 Harisinghani M G, Dixon W T, Saksena M A. et al . MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10. Radiographics. 2004; 24 867-878
- 10 Barrett T, Choyke P L, Kobayashi H. Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging. 2006; 1 230-245
- 11 Luciani A, Itti E, Rahmouni A. et al . Lymph node imaging: basic principles. Eur J Radiol. 2006; 58 338-344
- 12 Saksena M A, Saokar A, Harisinghani M G. Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur J Radiol. 2006; 58 367-374
- 13 Saokar A, Braschi M, Harisinghani M G. Lymphotrophic nanoparticle enhanced MR imaging (LNMRI) for lymph node imaging. Abdom Imaging. 2006; 31 660-667
- 14 Michel S C, Keller T M, Frohlich J M. et al . Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology. 2002; 225 527-536
- 15 Choi S H, Han M H, Moon W K. et al . Cervical lymph node metastases: MR imaging of gadofluorine M and monocrystalline iron oxide nanoparticle-47 in a rabbit model of head and neck cancer. Radiology. 2006; 241 753-762
- 16 Misselwitz B, Platzek J, Weinmann H J. Early MR lymphography with gadofluorine M in rabbits. Radiology. 2004; 231 682-688
- 17 Barkhausen J, Ebert W, Heyer C. et al . Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation. 2003; 108 605-609
- 18 Sirol M, Itskovich V V, Mani V. et al . Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004; 109 2890-2896
- 19 Meding J, Urich M, Licha K. et al . Magnetic resonance imaging of atherosclerosis by targeting extracellular matrix deposition with Gadofluorine M. Contrast Media Mol Imaging. 2007; 2 120-129
- 20 Anzai Y, Blackwell K E, Hirschowitz S L. et al . Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology. 1994; 192 709-715
- 21 Spuentrup E, Katoh M, Wiethoff A J. et al . Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med. 2005; 172 494-500
- 22 Hore P. Solvent suppression in Fourier transformation nuclear magnetic resonance. JMR. 1983; 55 283-300
- 23 Spuentrup E, Ruhl K M, Botnar R M. et al . Molecular MR-imaging of myocardial perfusion using EP-3600, a collagen specific contrast agent: Initial feasibility study in a swine model. Circulation. 2009; 119 1768-1775
- 24 Keil S, Behrendt F F, Stanzel S. et al . RECIST and WHO criteria evaluation of cervical, thoracic and abdominal lymph nodes in patients with malignant lymphoma: manual versus semi-automated measurement on standard MDCT slices. Fortschr Röntgenstr. 2009; 181 888-895
- 25 Lemke U, Hamm B. Pretreatment diagnostic evaluation of cervical cancer. Fortschr Röntgenstr. 2009; 181 433-440
- 26 Stracke C P, Katoh M, Wiethoff A J. et al . Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke. 2007; 38 1476-1481
- 27 Katoh M, Haage P, Wiethoff A J. et al . Molecular magnetic resonance imaging of deep vein thrombosis using a fibrin-targeted contrast agent: A feasibility study. Invest Radiol. 2009; 44 146-150
- 28 Spuentrup E, Buecker A, Katoh M. et al . Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation. 2005; 22 1377-1382
- 29 Spuentrup E, Fausten B, Kinzel S. et al . Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation. 2005; 112 396-399
- 30 Merkle E M, Dale B M, Barboriak D P. Gain in signal-to-noise for first-pass contrast-enhanced abdominal MR angiography at 3 Tesla over standard 1.5 Tesla: prediction with a computer model. Acad Radiol. 2007; 14 795-803
- 31 Rohrer M, Bauer H, Mintorovitch J. et al . Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005; 40 715-724
- 32 Henning T D, Saborowski O, Golovko D. et al . Cell labeling with the positive MR contrast agent Gadofluorine M. Eur Radiol. 2007; 17 1226-1234
- 33 Botnar R, Buecker A, Wiethoff A J. et al . In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation. 2004; 110 1463-1466
- 34 Maintz D, Ozgun M, Hoffmeier A. et al . Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J. 2006; 27 1732-1736
- 35 Harika L, Weissleder R, Poss K. et al . Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies. Radiology. 1996; 198 365-370
- 36 Weinmann H J, Ebert W, Misselwitz B. et al . Tissue-specific MR contrast agents. Eur J Radiol. 2003; 46 33-44
Prof. Elmar Spuentrup
Institut für Radiologie, Klinikum Saarbrücken
Winterberg 1
66119 Saarbrücken
Telefon: ++ 49/6 81/9 63 23 51
Fax: ++ 49/6 81/9 63 23 53
eMail: spuenti@rad.rwth-aachen.de