Zusammenfassung
Ziel: Untersuchung von Gadofluorine M für die MR-Bildgebung von Lymphknoten (LK) in einem Großtiermodel bei 1,5 und 3 T. Material und Methoden: Es wurden sowohl die pelvinen als auch die zervikalen Lymphknotenstationen in einem Schweinemodell vor als auch 24 h nach intravenöser Gabe von 50 µmol/kgKG des Kontrastmittels Gadofluorine M (experimentelles Kontrastmittel) untersucht. Als MR-Sequenzen dienten klinisch einsetzbare T 1-gewichtete Sequenzen, welche sowohl bei 1,5 als auch bei 3 T eingesetzt wurden. Das Signal-zu-Rauschen-Verhältnis und das Kontrast-zu-Rauschen-Verhältnis im Vergleich zum umliegenden Gewebe wurden bestimmt und mit dem Stundents-t-Test verglichen. Post mortem wurde in 43 explantierten Lymphknoten die Gd-Konzentration bestimmt. Ergebnisse: Nach Gabe von Gadofluorine M zeigten alle Lymphknoten eine deutlich gesteigerte Signalintensität mit hohem Kontrast zum umliegenden Gewebe (SNRpelvineLKs post vs. pre: 46 ± 7 vs. 14 ± 3, SNRcervicaleLKs post vs. pre: 105 ± 64 vs. 32 ± 21; CNRpelvineLKs vs. Muskel post vs. pre 28 ± 5 vs. 0.2 ± 0.5, CNRcervicaleLKs vs. Muskel post vs. pre 76 ± 53 vs. 11 ± 15, p < 0,05 für alle Vergleiche). SNR und CNR der pelvinen LKs war bei 3 T höher im Vergleich zu 1,5 T (SNR LKs 3 T vs. 1,5 T 84 ± 6 vs. 46 ± 7, CNR LKs vs. Muskel 3 T vs. 1,5 T 53 ± 9 vs. 28 ± 5; p < 0,05). In allen Lymphknoten wurde eine hohe Akkumulation von Gd nachgewiesen (149 ± 25 µmol Gd/L). Schlussfolgerung: Gadofluorine M akkumuliert in Lymphknoten. Dieses erlaubt die selektive Darstellung von Lymphknoten mit hohem Kontrast in einem Großtiermodell, wobei klinisch verwendbare MR-Sequenzen eingesetzt werden können. 3 T verbessert sowohl das SNR als auch das CNR im Vergleich zu 1,5 T.
Abstract
Purpose: To investigate the potential of Gadofluorine M for targeted lymph node imaging in a human size animal model and on a clinical MR scanner at 1.5 and 3 T. Materials and Methods: Pelvic and cervical lymph nodes in a swine model were investigated prior to and 24 hours after intravenous administration of 50 µmol/kg body weight Gadofluorine M, an experimental contrast agent. MR imaging was carried out on clinical 1.5 T and 3 T whole-body MR systems using clinically available coils and T 1-weighted sequences. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) with respect to the surrounding tissue were assessed and compared using the Student’s t-test. The Gd concentration in the lymph nodes (n = 43) was measured post mortem by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). Results: Gadofluorine M allowed for high signal and high contrast visualization of lymph nodes in all stations on post-contrast images with a significantly increased SNR and CNR (SNR pelvic lymph nodes post vs. pre: 46 ± 7 vs.14 ± 3, SNR cervical lymph nodes post vs. pre: 105 ± 64 vs. 32 ± 21; CNR pelvic lymph node vs. muscle post vs. pre 28 ± 5 vs. 0.2 ± 0.5, CNR cervical lymph node vs. muscle post vs. pre 76 ± 53 vs. 11 ± 15, p < 0.05 for all comparisons). The SNR and CNR in the pelvis were further improved using 3 T compared to 1.5 T scanners (SNR lymph nodes 3 T vs. 1.5 T 84 ± 6 vs. 46 ± 7, CNR lymph node vs. muscle 3 T vs. 1.5 T 53 ± 9 vs. 28 ± 5 respectively, p < 0.05). A high concentration of Gd in the lymph nodes was found (149 ± 25 mmol Gd/L). Conclusion: Gadofluorine M accumulates in the lymph nodes and allows for selective targeted high contrast MR imaging of lymph node tissue in a large animal model using clinically available MR imaging techniques. 3 T further improves SNR and CNR compared to 1.5 T.
Key words
lymphatic - lymphography - MR imaging - animal investigations - contrast agents - molecular imaging
References
1
Ruehm S G, Schroeder T, Debatin J F.
Interstitial MR lymphography with gadoterate meglumine: initial experience in humans.
Radiology.
2001;
220
816-821
2
Staatz G, Nolte-Ernsting C C, Adam G B. et al .
Interstitial T 1-weighted MR lymphography: lipophilic perfluorinated gadolinium chelates in pigs.
Radiology.
2001;
220
129-134
3
Misselwitz B.
MR contrast agents in lymph node imaging.
Eur J Radiol.
2006;
58
375-382
4
Suga K, Yuan Y, Ogasawara N. et al .
Localization of breast sentinel lymph nodes by MR lymphography with a conventional gadolinium contrast agent. Preliminary observations in dogs and humans.
Acta Radiol.
2003;
44
35-42
5
Staatz G, Spuntrup E, Buecker A. et al .
T1-weighted MR-lymphography after intramammary administration of Gadomer-17 in pigs.
Fortschr Röntgenstr.
2002;
174
29-32
6
Wunderbaldinger P.
Problems and prospects of modern lymph node imaging.
Eur J Radiol.
2006;
58
325-337
7
Weissleder R, Elizondo G, Wittenberg J. et al .
Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging.
Radiology.
1990;
175
489-493
8
Harisinghani M G, Barentsz J, Hahn P F. et al .
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
N Engl J Med.
2003;
348
2491-2499
9
Harisinghani M G, Dixon W T, Saksena M A. et al .
MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10.
Radiographics.
2004;
24
867-878
10
Barrett T, Choyke P L, Kobayashi H.
Imaging of the lymphatic system: new horizons.
Contrast Media Mol Imaging.
2006;
1
230-245
11
Luciani A, Itti E, Rahmouni A. et al .
Lymph node imaging: basic principles.
Eur J Radiol.
2006;
58
338-344
12
Saksena M A, Saokar A, Harisinghani M G.
Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging.
Eur J Radiol.
2006;
58
367-374
13
Saokar A, Braschi M, Harisinghani M G.
Lymphotrophic nanoparticle enhanced MR imaging (LNMRI) for lymph node imaging.
Abdom Imaging.
2006;
31
660-667
14
Michel S C, Keller T M, Frohlich J M. et al .
Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement.
Radiology.
2002;
225
527-536
15
Choi S H, Han M H, Moon W K. et al .
Cervical lymph node metastases: MR imaging of gadofluorine M and monocrystalline iron oxide nanoparticle-47 in a rabbit model of head and neck cancer.
Radiology.
2006;
241
753-762
16
Misselwitz B, Platzek J, Weinmann H J.
Early MR lymphography with gadofluorine M in rabbits.
Radiology.
2004;
231
682-688
17
Barkhausen J, Ebert W, Heyer C. et al .
Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging.
Circulation.
2003;
108
605-609
18
Sirol M, Itskovich V V, Mani V. et al .
Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging.
Circulation.
2004;
109
2890-2896
19
Meding J, Urich M, Licha K. et al .
Magnetic resonance imaging of atherosclerosis by targeting extracellular matrix deposition with Gadofluorine M.
Contrast Media Mol Imaging.
2007;
2
120-129
20
Anzai Y, Blackwell K E, Hirschowitz S L. et al .
Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer.
Radiology.
1994;
192
709-715
21
Spuentrup E, Katoh M, Wiethoff A J. et al .
Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent.
Am J Respir Crit Care Med.
2005;
172
494-500
22
Hore P.
Solvent suppression in Fourier transformation nuclear magnetic resonance.
JMR.
1983;
55
283-300
23
Spuentrup E, Ruhl K M, Botnar R M. et al .
Molecular MR-imaging of myocardial perfusion using EP-3600, a collagen specific contrast agent: Initial feasibility study in a swine model.
Circulation.
2009;
119
1768-1775
24
Keil S, Behrendt F F, Stanzel S. et al .
RECIST and WHO criteria evaluation of cervical, thoracic and abdominal lymph nodes in patients with malignant lymphoma: manual versus semi-automated measurement on standard MDCT slices.
Fortschr Röntgenstr.
2009;
181
888-895
25
Lemke U, Hamm B.
Pretreatment diagnostic evaluation of cervical cancer.
Fortschr Röntgenstr.
2009;
181
433-440
26
Stracke C P, Katoh M, Wiethoff A J. et al .
Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent.
Stroke.
2007;
38
1476-1481
27
Katoh M, Haage P, Wiethoff A J. et al .
Molecular magnetic resonance imaging of deep vein thrombosis using a fibrin-targeted contrast agent: A feasibility study.
Invest Radiol.
2009;
44
146-150
28
Spuentrup E, Buecker A, Katoh M. et al .
Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent.
Circulation.
2005;
22
1377-1382
29
Spuentrup E, Fausten B, Kinzel S. et al .
Molecular magnetic resonance imaging of atrial clots in a swine model.
Circulation.
2005;
112
396-399
30
Merkle E M, Dale B M, Barboriak D P.
Gain in signal-to-noise for first-pass contrast-enhanced abdominal MR angiography at 3 Tesla over standard 1.5 Tesla: prediction with a computer model.
Acad Radiol.
2007;
14
795-803
31
Rohrer M, Bauer H, Mintorovitch J. et al .
Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.
Invest Radiol.
2005;
40
715-724
32
Henning T D, Saborowski O, Golovko D. et al .
Cell labeling with the positive MR contrast agent Gadofluorine M.
Eur Radiol.
2007;
17
1226-1234
33
Botnar R, Buecker A, Wiethoff A J. et al .
In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent.
Circulation.
2004;
110
1463-1466
34
Maintz D, Ozgun M, Hoffmeier A. et al .
Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI.
Eur Heart J.
2006;
27
1732-1736
35
Harika L, Weissleder R, Poss K. et al .
Macromolecular intravenous contrast agent for MR lymphography: characterization and efficacy studies.
Radiology.
1996;
198
365-370
36
Weinmann H J, Ebert W, Misselwitz B. et al .
Tissue-specific MR contrast agents.
Eur J Radiol.
2003;
46
33-44
Prof. Elmar Spuentrup
Institut für Radiologie, Klinikum Saarbrücken
Winterberg 1
66119 Saarbrücken
Phone: ++ 49/6 81/9 63 23 51
Fax: ++ 49/6 81/9 63 23 53
Email: spuenti@rad.rwth-aachen.de