Subscribe to RSS
DOI: 10.1055/s-0029-1245648
© Georg Thieme Verlag KG Stuttgart · New York
High Spatial Resolution and High Contrast Visualization of Brain Arteries and Veins: Impact of Blood Pool Contrast Agent and Water-Selective Excitation Imaging at 3T
Örtlich hochaufgelöste Darstellung der Hirnarterien und Hirnvenen mit Hochkontrast: Einfluss eines intravasalen Kontrastmittels und einer wasser-selektiven Anregung bei 3TPublication History
received: 5.3.2009
accepted: 9.7.2010
Publication Date:
27 August 2010 (online)
Zusammenfassung
Ziel: Untersuchung eines intravasalen Kontrastmittels und einer wasser-selektiven Anregung bei 3 T für die hoch-aufgelöste und Hochkontrast-Darstellung der Hirngefässe einschliesslich der Venen. Methode und Ergebnisse: 48 Patienten (47 ± 18Jahre alt) wurden nach schriftlichem Einverständnis eingeschlossen. Im Rahmen einer klinischen MRT erhielten 24 Patienten eine Einfachdosis des extrazellulären Gadoterate-Meglumines (Dotarem®) und 24 das intravasale Kontrastmittel Gadofosveset (Vasovist®). Im Anschluss wurde alle Patienten mit 2 örtlich hochaufgelösten (Voxelgröße 0,15 mm3) Gradientenechosequenzen in zufälliger Reihenfolge in der Äquilibriumsphase nach Kontrastmittelgabe untersucht: Eine gespoilte Standard-Gradientenechosequenz (HR-SS, TR/TE 5,1 / 2,3 ms, FA 30°) und eine fettunterdrückende Gradientenechosequenz mit wasserselektiver Anregung (HR-FS, 1331 Binominal-Puls, TR/TE 8,8 / 3,8 ms, FA 30°). Die Aufnahmen wurden subjektiv von 2 Radiologen in Bezug auf Bildqualität, Gefäßkontrast, Artefakte und Abgrenzbarkeit der Läsion analysiert sowie das Kontrast-zu-Rauschen-Verhältnis (CNR) mittels Students-t-Test verglichen. Die Bildqualität und das CNR waren für beide Kontrastmittel in der HR-FS signifikant höher als in der HR-SS (p < 0,05). CNR wurde geringfügig weiter gesteigert durch den Einsatz des intravasalen Kontrastmittels, jedoch ohne dass dabei eine subjektive Verbesserung erzielt werden konnte. Schlussfolgerung: Die wasserselektive Anregung verbessert die Bildqualität und das CNR bei einer örtlich hochaufgelösten Darstellung von Hirnarterien und -venen. Der Einsatz eines intravasalen Kontrastmittels ergibt nur eine geringfügig weitere Verbesserung.
Abstract
Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem®) and 24 received the blood pool contrast agent Gadofosveset (Vasovist®). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30°) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30°). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student’s t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent.
Key words
MR imaging - brain - veins - arteries - sequence design, water selective excitation - blood pool contrast agent
References
- 1 Dumoulin C L, Cline H E, Souza S P et al. Three-dimensional time-of-flight magnetic resonance angiography using spin saturation. Magn Reson Med. 1989; 11 35-46
- 2 Ruehm S G, Zimny K, Debatin J F. Direct contrast-enhanced 3D MR venography. Eur Radiol. 2001; 11 102-112
- 3 Lovblad K O, Schneider J, Bassetti C et al. Fast contrast-enhanced MR whole-brain venography. Neuroradiology. 2002; 44 681-688
- 4 Haroun A. Utility of contrast-enhanced 3D turbo-flash MR angiography in evaluating the intracranial venous system. Neuroradiology. 2005; 47 322-327
- 5 Lafitte F, Boukobza M, Guichard J P et al. MRI and MRA for diagnosis and follow-up of cerebral venous thrombosis (CVT). Clin Radiol. 1997; 52 672-679
- 6 Bozzao A, Finocchi V, Romano A et al. Role of contrast-enhanced MR venography in the preoperative evaluation of parasagittal meningiomas. Eur Radiol. 2005; 15 1790-1796
- 7 Leach J L, Fortuna R B, Jones B V et al. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006; 26 S19-S41 ; discussion S42 – S43
- 8 Connor S E, Jarosz J M. Magnetic resonance imaging of cerebral venous sinus thrombosis. Clin Radiol. 2002; 57 449-461
- 9 Stracke C P, Spuentrup E, Reinacher P et al. Time resolved 3D MRA: Applications for interventional neuroradiology. Interv Neuroradiol. 2006; 12 223-231
- 10 Willinek W A, Hadizadeh D R, Falkenhausen von M et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0 T. J Magn Reson Imaging. 2008; 27 1455-1460
- 11 Ruhl K M, Katoh M, Langer S et al. Time-resolved 3D MR angiography of the foot at 3T in patients with peripheral arterial disease. Am J Roentgenol. 2008; 190 W360-W364
- 12 Hadizadeh D R, Falkenhausen von M, Gieseke J et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology. 2008; 246 205-213
- 13 Reinacher P C, Stracke P, Reinges M H et al. Contrast-enhanced time-resolved 3-D MRA: applications in neurosurgery and interventional neuroradiology. Neuroradiology. 2007; 49 S3-S13
- 14 Boeckh-Behrens T, Bitterling H, Schichor C et al. Improved Localization of Spinal AV Fistulas using Contrast-Enhanced MR Angiography at 3T. Fortschr Röntgenstr. 2009; 182 53-57
- 15 Spuentrup E, Wiethoff A J, Parsons E C et al. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent. Eur J Radiol. in press 2009;
- 16 Caroli E, Orlando E R, Mastronardi L et al. Meningiomas infiltrating the superior sagittal sinus: surgical considerations of 328 cases. Neurosurg Rev. 2006; 29 236-241
- 17 Bodkin P A, Hassan M F, Kane P J et al. ‘Surgical’ causes of benign intracranial hypertension. J R Soc Med. 2008; 101 259-261
- 18 Higgins J N, Cousins C, Owler B K et al. Idiopathic intracranial hypertension: 12 cases treated by venous sinus stenting. J Neurol Neurosurg Psychiatry. 2003; 74 1662-1666
- 19 Hunsche S, Sauner D, Maarouf M et al. MR-guided stereotactic neurosurgery – comparison of fiducial-based and anatomical landmark transformation approaches. Phys Med Biol. 2004; 49 2705-2716
- 20 Parmelee D J, Walovitch R C, Ouellet H S et al. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol. 1997; 32 741-747
- 21 Bremerich J, Bilecen D, Reimer P. MR angiography with blood pool contrast agents. Eur Radiol. 2007; 17 3017-3024
- 22 Lauffer R B, Parmelee D J, Dunham S U et al. MS-325: albumin-targeted contrast agent for MR angiography. Radiology. 1998; 207 529-538
- 23 Nikolaou K, Kramer H, Grosse C et al. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006; 241 861-872
- 24 Hadizadeh D R, Gieseke J, Lohmaier S H et al. Peripheral MR angiography with blood pool contrast agent: prospective intraindividual comparative study of high-spatial-resolution steady-state MR angiography versus standard-resolution first-pass MR angiography and DSA. Radiology. 2008; 249 701-711
- 25 Lin W, Tkach J A, Haacke E M et al. Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences. Radiology. 1993; 186 753-761
- 26 Michaely H J, Attenberger U I, Dietrich O et al. Feasibility of gadofosveset-enhanced steady-state magnetic resonance angiography of the peripheral vessels at 3 Tesla with Dixon fat saturation. Invest Radiol. 2008; 43 635-641
- 27 Stracke C P, Katoh M, Wiethoff A J et al. Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke. 2007; 38 1476-1481
- 28 Hore P. Solvent suppression in Fourier transformation nuclear magnetic resonance. JMR. 1983; 55 283-300
- 29 Hauger O, Dumont E, Chateil J F et al. Water excitation as an alternative to fat saturation in MR imaging: preliminary results in musculoskeletal imaging. Radiology. 2002; 224 657-663
- 30 Heverhagen J T. Noise measurement and estimation in MR imaging experiments. Radiology. 2007; 245 638-639
- 31 Gunther A, Schneider J P, Schneider D et al. Sinus vein thrombosis. Fortschr Neurol Psychiatr. 2004; 72 652-660 ; quiz 661 – 652
- 32 Grist T M, Korosec F R, Peters D C et al. Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology. 1998; 207 539-544
- 33 Morcos S K, Thomsen H S. Nephrogenic Systemic Fibrosis: More Questions and Some Answers. Nephron Clin Pract. 2008; 110 c24-c32
- 34 Adam G, Neuerburg J, Spuntrup E et al. Dynamic contrast-enhanced MR imaging of the upper abdomen: enhancement properties of gadobutrol, gadolinium-DTPA-polylysine, and gadolinium-DTPA-cascade-polymer. Magn Reson Med. 1994; 32 622-628
- 35 Adam G, Neuerburg J, Spuntrup E et al. Gd-DTPA-cascade-polymer: potential blood pool contrast agent for MR imaging. J Magn Reson Imaging. 1994; 4 462-466
- 36 Tombach B, Reimer P, Mahler M et al. First-pass and equilibrium phase MRA following intravenous bolus injection of SH U 555 C: Phase I clinical trial in elderly volunteers with risk factors for arterial vascular disease. Acad Radiol. 2002; 9 S425-427
- 37 Paetsch I, Jahnke C, Barkhausen J et al. Detection of coronary stenoses with contrast-enhanced, three-dimensional free breathing coronary MR angiography using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22 956). J Cardiovasc Magn Reson. 2006; 8 509-516
- 38 Schmitz S A, Coupland S E, Gust R et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 2000; 35 460-471
- 39 Taupitz M, Schnorr J, Wagner S et al. Coronary MR angiography: experimental results with a monomer-stabilized blood pool contrast medium. Radiology. 2002; 222 120-126
- 40 Rohrer M, Bauer H, Mintorovitch J et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005; 40 715-724
- 41 Stanisz G J, Odrobina E E, Pun J et al. T1, T 2 relaxation and magnetization transfer in tissue at 3 T. Magn Reson Med. 2005; 54 507-512
- 42 Rinck P A, Muller R N. Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol. 1999; 9 998-1004
- 43 Merkle E M, Dale B M, Barboriak D P. Gain in signal-to-noise for first-pass contrast-enhanced abdominal MR angiography at 3 Tesla over standard 1.5 Tesla: prediction with a computer model. Acad Radiol. 2007; 14 795-803
- 44 Koelblinger C, Schima W, Weber M et al. Gadoxate-enhanced T 1-weighted MR cholangiography: comparison of 1.5T and 3.0T. Fortschr Röntgenstr. 2009; 181 587-592
- 45 Regier M, Nolte-Ernsting C, Adam G et al. Intraindividual comparison of image quality in MR urography at 1.5 and 3 tesla in an animal model. Fortschr Röntgenstr. 2008; 180 915-921
- 46 Schad L, Lott S, Schmitt F et al. Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy. J Comput Assist Tomogr. 1987; 11 499-505
- 47 Stam J. Thrombosis of the cerebral veins and sinuses. N Engl J Med. 2005; 352 1791-1798
Prof. Elmar Spuentrup
Radiologie, Klinikum Saarbrücken
Winterberg 1
66119 Saarbrücken
Germany
Phone: ++ 49/6 81/9 63 23 51
Fax: ++ 49/6 81/9 62 23 53
Email: spuenti@rad.rwth-aachen.de