Zusammenfassung
Ziel: Untersuchung eines intravasalen Kontrastmittels und einer wasser-selektiven Anregung bei 3 T für die hoch-aufgelöste und Hochkontrast-Darstellung der Hirngefässe einschliesslich der Venen. Methode und Ergebnisse: 48 Patienten (47 ± 18Jahre alt) wurden nach schriftlichem Einverständnis eingeschlossen. Im Rahmen einer klinischen MRT erhielten 24 Patienten eine Einfachdosis des extrazellulären Gadoterate-Meglumines (Dotarem®) und 24 das intravasale Kontrastmittel Gadofosveset (Vasovist®). Im Anschluss wurde alle Patienten mit 2 örtlich hochaufgelösten (Voxelgröße 0,15 mm3 ) Gradientenechosequenzen in zufälliger Reihenfolge in der Äquilibriumsphase nach Kontrastmittelgabe untersucht: Eine gespoilte Standard-Gradientenechosequenz (HR-SS, TR/TE 5,1 / 2,3 ms, FA 30°) und eine fettunterdrückende Gradientenechosequenz mit wasserselektiver Anregung (HR-FS, 1331 Binominal-Puls, TR/TE 8,8 / 3,8 ms, FA 30°). Die Aufnahmen wurden subjektiv von 2 Radiologen in Bezug auf Bildqualität, Gefäßkontrast, Artefakte und Abgrenzbarkeit der Läsion analysiert sowie das Kontrast-zu-Rauschen-Verhältnis (CNR) mittels Students-t-Test verglichen. Die Bildqualität und das CNR waren für beide Kontrastmittel in der HR-FS signifikant höher als in der HR-SS (p < 0,05). CNR wurde geringfügig weiter gesteigert durch den Einsatz des intravasalen Kontrastmittels, jedoch ohne dass dabei eine subjektive Verbesserung erzielt werden konnte. Schlussfolgerung: Die wasserselektive Anregung verbessert die Bildqualität und das CNR bei einer örtlich hochaufgelösten Darstellung von Hirnarterien und -venen. Der Einsatz eines intravasalen Kontrastmittels ergibt nur eine geringfügig weitere Verbesserung.
Abstract
Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem®) and 24 received the blood pool contrast agent Gadofosveset (Vasovist®). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30°) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30°). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student’s t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent.
Key words
MR imaging - brain - veins - arteries - sequence design, water selective excitation - blood pool contrast agent
References
1
Dumoulin C L, Cline H E, Souza S P et al.
Three-dimensional time-of-flight magnetic resonance angiography using spin saturation.
Magn Reson Med.
1989;
11
35-46
2
Ruehm S G, Zimny K, Debatin J F.
Direct contrast-enhanced 3D MR venography.
Eur Radiol.
2001;
11
102-112
3
Lovblad K O, Schneider J, Bassetti C et al.
Fast contrast-enhanced MR whole-brain venography.
Neuroradiology.
2002;
44
681-688
4
Haroun A.
Utility of contrast-enhanced 3D turbo-flash MR angiography in evaluating the intracranial venous system.
Neuroradiology.
2005;
47
322-327
5
Lafitte F, Boukobza M, Guichard J P et al.
MRI and MRA for diagnosis and follow-up of cerebral venous thrombosis (CVT).
Clin Radiol.
1997;
52
672-679
6
Bozzao A, Finocchi V, Romano A et al.
Role of contrast-enhanced MR venography in the preoperative evaluation of parasagittal meningiomas.
Eur Radiol.
2005;
15
1790-1796
7
Leach J L, Fortuna R B, Jones B V et al.
Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls.
Radiographics.
2006;
26
S19-S41
; discussion S42 – S43
8
Connor S E, Jarosz J M.
Magnetic resonance imaging of cerebral venous sinus thrombosis.
Clin Radiol.
2002;
57
449-461
9
Stracke C P, Spuentrup E, Reinacher P et al.
Time resolved 3D MRA: Applications for interventional neuroradiology.
Interv Neuroradiol.
2006;
12
223-231
10
Willinek W A, Hadizadeh D R, Falkenhausen von M et al.
4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0 T.
J Magn Reson Imaging.
2008;
27
1455-1460
11
Ruhl K M, Katoh M, Langer S et al.
Time-resolved 3D MR angiography of the foot at 3T in patients with peripheral arterial disease.
Am J Roentgenol.
2008;
190
W360-W364
12
Hadizadeh D R, Falkenhausen von M, Gieseke J et al.
Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA.
Radiology.
2008;
246
205-213
13
Reinacher P C, Stracke P, Reinges M H et al.
Contrast-enhanced time-resolved 3-D MRA: applications in neurosurgery and interventional neuroradiology.
Neuroradiology.
2007;
49
S3-S13
14
Boeckh-Behrens T, Bitterling H, Schichor C et al.
Improved Localization of Spinal AV Fistulas using Contrast-Enhanced MR Angiography at 3T.
Fortschr Röntgenstr.
2009;
182
53-57
15
Spuentrup E, Wiethoff A J, Parsons E C et al.
High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent.
Eur J Radiol.
in press
2009;
16
Caroli E, Orlando E R, Mastronardi L et al.
Meningiomas infiltrating the superior sagittal sinus: surgical considerations of 328 cases.
Neurosurg Rev.
2006;
29
236-241
17
Bodkin P A, Hassan M F, Kane P J et al.
‘Surgical’ causes of benign intracranial hypertension.
J R Soc Med.
2008;
101
259-261
18
Higgins J N, Cousins C, Owler B K et al.
Idiopathic intracranial hypertension: 12 cases treated by venous sinus stenting.
J Neurol Neurosurg Psychiatry.
2003;
74
1662-1666
19
Hunsche S, Sauner D, Maarouf M et al.
MR-guided stereotactic neurosurgery – comparison of fiducial-based and anatomical landmark transformation approaches.
Phys Med Biol.
2004;
49
2705-2716
20
Parmelee D J, Walovitch R C, Ouellet H S et al.
Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging.
Invest Radiol.
1997;
32
741-747
21
Bremerich J, Bilecen D, Reimer P.
MR angiography with blood pool contrast agents.
Eur Radiol.
2007;
17
3017-3024
22
Lauffer R B, Parmelee D J, Dunham S U et al.
MS-325: albumin-targeted contrast agent for MR angiography.
Radiology.
1998;
207
529-538
23
Nikolaou K, Kramer H, Grosse C et al.
High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience.
Radiology.
2006;
241
861-872
24
Hadizadeh D R, Gieseke J, Lohmaier S H et al.
Peripheral MR angiography with blood pool contrast agent: prospective intraindividual comparative study of high-spatial-resolution steady-state MR angiography versus standard-resolution first-pass MR angiography and DSA.
Radiology.
2008;
249
701-711
25
Lin W, Tkach J A, Haacke E M et al.
Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences.
Radiology.
1993;
186
753-761
26
Michaely H J, Attenberger U I, Dietrich O et al.
Feasibility of gadofosveset-enhanced steady-state magnetic resonance angiography of the peripheral vessels at 3 Tesla with Dixon fat saturation.
Invest Radiol.
2008;
43
635-641
27
Stracke C P, Katoh M, Wiethoff A J et al.
Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent.
Stroke.
2007;
38
1476-1481
28
Hore P.
Solvent suppression in Fourier transformation nuclear magnetic resonance.
JMR.
1983;
55
283-300
29
Hauger O, Dumont E, Chateil J F et al.
Water excitation as an alternative to fat saturation in MR imaging: preliminary results in musculoskeletal imaging.
Radiology.
2002;
224
657-663
30
Heverhagen J T.
Noise measurement and estimation in MR imaging experiments.
Radiology.
2007;
245
638-639
31
Gunther A, Schneider J P, Schneider D et al.
Sinus vein thrombosis.
Fortschr Neurol Psychiatr.
2004;
72
652-660
; quiz 661 – 652
32
Grist T M, Korosec F R, Peters D C et al.
Steady-state and dynamic MR angiography with MS-325: initial experience in humans.
Radiology.
1998;
207
539-544
33
Morcos S K, Thomsen H S.
Nephrogenic Systemic Fibrosis: More Questions and Some Answers.
Nephron Clin Pract.
2008;
110
c24-c32
34
Adam G, Neuerburg J, Spuntrup E et al.
Dynamic contrast-enhanced MR imaging of the upper abdomen: enhancement properties of gadobutrol, gadolinium-DTPA-polylysine, and gadolinium-DTPA-cascade-polymer.
Magn Reson Med.
1994;
32
622-628
35
Adam G, Neuerburg J, Spuntrup E et al.
Gd-DTPA-cascade-polymer: potential blood pool contrast agent for MR imaging.
J Magn Reson Imaging.
1994;
4
462-466
36
Tombach B, Reimer P, Mahler M et al.
First-pass and equilibrium phase MRA following intravenous bolus injection of SH U 555 C: Phase I clinical trial in elderly volunteers with risk factors for arterial vascular disease.
Acad Radiol.
2002;
9
S425-427
37
Paetsch I, Jahnke C, Barkhausen J et al.
Detection of coronary stenoses with contrast-enhanced, three-dimensional free breathing coronary MR angiography using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22 956).
J Cardiovasc Magn Reson.
2006;
8
509-516
38
Schmitz S A, Coupland S E, Gust R et al.
Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits.
Invest Radiol.
2000;
35
460-471
39
Taupitz M, Schnorr J, Wagner S et al.
Coronary MR angiography: experimental results with a monomer-stabilized blood pool contrast medium.
Radiology.
2002;
222
120-126
40
Rohrer M, Bauer H, Mintorovitch J et al.
Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths.
Invest Radiol.
2005;
40
715-724
41
Stanisz G J, Odrobina E E, Pun J et al.
T1, T 2 relaxation and magnetization transfer in tissue at 3 T.
Magn Reson Med.
2005;
54
507-512
42
Rinck P A, Muller R N.
Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents.
Eur Radiol.
1999;
9
998-1004
43
Merkle E M, Dale B M, Barboriak D P.
Gain in signal-to-noise for first-pass contrast-enhanced abdominal MR angiography at 3 Tesla over standard 1.5 Tesla: prediction with a computer model.
Acad Radiol.
2007;
14
795-803
44
Koelblinger C, Schima W, Weber M et al.
Gadoxate-enhanced T 1-weighted MR cholangiography: comparison of 1.5T and 3.0T.
Fortschr Röntgenstr.
2009;
181
587-592
45
Regier M, Nolte-Ernsting C, Adam G et al.
Intraindividual comparison of image quality in MR urography at 1.5 and 3 tesla in an animal model.
Fortschr Röntgenstr.
2008;
180
915-921
46
Schad L, Lott S, Schmitt F et al.
Correction of spatial distortion in MR imaging: a prerequisite for accurate stereotaxy.
J Comput Assist Tomogr.
1987;
11
499-505
47
Stam J.
Thrombosis of the cerebral veins and sinuses.
N Engl J Med.
2005;
352
1791-1798
Prof. Elmar Spuentrup
Radiologie, Klinikum Saarbrücken
Winterberg 1
66119 Saarbrücken
Germany
Phone: ++ 49/6 81/9 63 23 51
Fax: ++ 49/6 81/9 62 23 53
Email: spuenti@rad.rwth-aachen.de