Klin Monbl Augenheilkd 2011; 228(10): 892-899
DOI: 10.1055/s-0029-1245892
Experimentelle Studie

© Georg Thieme Verlag KG Stuttgart · New York

Altersbedingte Makuladegeneration: die Rolle von Licht bei der Entstehung degenerativer Veränderungen im menschlichen RPE und möglicher Zell-Schutz durch Minocyclin

The Role of Light in the Developement of RPE Degeneration in AMD and Potential Cytoprotection of MinocyclineM. Kernt1 , S. Thiele1 , C. Hirneiss1 , A. S. Neubauer1 , C.-A. Lackerbauer1 , M. W. Ulbig1 , A. Kampik1
  • 1Augenklinik, Ludwig-Maximilians-Universität München
Further Information

Publication History

Eingegangen: 4.8.2010

Angenommen: 2.11.2010

Publication Date:
23 March 2011 (online)

Zusammenfassung

Hintergrund: Lichtinduzierter oxidativer Stress wird als mögliche Ursachen degenerativer Veränderungen im retinalen Pigmentepithel (RPE) bei der altersabhängigen Makuladegeneration (AMD) angesehen. Diese Studie untersucht den Einfluss von Licht auf die Induktion von intrazellulären freien Sauerstoffradikalen (ROS) und Apoptose im menschlichen RPE sowie mögliche anti-apoptotische, zytoprotektive Wirkungen des Tetrazyklin-Antibiotikums Minocyclin. Methoden: Kulturen primärer humaner RPE-Zellen wurden mit weißem Licht bestrahlt oder oxidativem Stress ausgesetzt (600 µM H 2O2) und zusätzlich mit Minocyclin behandelt. Es wurden Vitalität, Induktion von Apoptose und intrazellulären ROS sowie die Expression von BAX und Bcl-2 auf zellulärer Ebene bestimmt (RT-PCR/Western Blot/ELISA). Ergebnisse: Sowohl die Bestrahlung der RPE Zellen mit weißem Licht als auch die H 2O2-Exposition führten zu einer bestrahlungszeitabhängigen Abnahme der Vitalität und der Expression von Bcl-2 sowie zu einer Induktion von Apoptose, ROS und der Bildung von BAX. Diese Zellschädigung wurde unter bestimmten Bedingungen durch Behandlung der Zellen mit Minocyclin reduziert. Schlussfolgerung: Diese Studie zeigt, dass Minocyclin humane RPE-Zellen wirkungsvoll vor oxidativem Stress schützt. Aufgrund seiner photosensibilisierenden Wirkung muss die mögliche Anwendung von Minocyclin bei AMD aber weiter evaluiert werden.

Abstract

Background: Light-induced oxidative stress is an suggested reason for retinal pigment epithelium (RPE) degeneration in age-related macular degeneration (AMD). This study investigates the influence of light on intracellular reactive oxygen species (ROS) and apoptosis in the human RPE and potential cytoprotective effects of the tetracycline antibiotic minocycline. Methods: Primary human RPE cells were either pre- or post-incubated with minocycline and then exposed to white light or oxidative stress (600 µM, H 2O2). Then viability, induction of intracellular reactive oxygen species (ROS), apoptosis and cell death was determined. Expression of apoptotic BAX and anti-apoptotic Bcl-2 protein and their mRNA were determined by RT-PCR and Western blot analysis. Results: Both light exposure and oxidative stress decreased RPE cell viability and Bcl-2 expression and increased intracellular ROS, apoptotic cell death, and BAX expression. Minocycline reduced these effects under certain conditions. Conclusions: This study demonstrates that minocycline effectively protects human RPE cells against oxidative damage. However, in the light of minocycline’s photosensitising properties its potential role in AMD treatment needs further evaluation.

Literatur

  • 1 Hawkins B S, Bird A, Klein R et al. Epidemiology of age-related macular degeneration.  Mol Vis. 1999;  5 26
  • 2 Klein R, Klein B E, Jensen S C et al. Age-related maculopathy in a multiracial United States population: the National Health and Nutrition Examination Survey III.  Ophthalmology. 1999;  106 1056-1065
  • 3 Rosenfeld P J, Brown D M, Heier J S et al. Ranibizumab for neovascular age-related macular degeneration.  N Engl J Med. 2006;  355 1419-1431
  • 4 Rosenfeld P J, Fung A E, Puliafito C A. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion.  Ophthalmic Surg Lasers Imaging. 2005;  36 336-339
  • 5 A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9.  Arch Ophthalmol. 2001;  119 1439-1452
  • 6 Klein R, Peto T, Bird A et al. The epidemiology of age-related macular degeneration.  Am J Ophthalmol. 2004;  137 486-495
  • 7 Schmidt S, Hauser M A, Scott W K et al. Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration.  Am J Hum Genet. 2006;  78 852-864
  • 8 Cruickshanks K J, Klein R, Klein B E. Sunlight and age-related macular degeneration. The Beaver Dam Eye Study.  Arch Ophthalmol. 1993;  111 514-518
  • 9 Klein R, Klein B E, Linton K L. Prevalence of age-related maculopathy. The Beaver Dam Eye Study.  Ophthalmology. 1992;  99 933-943
  • 10 Beatty S, Murray I J, Henson D B et al. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population.  Invest Ophthalmol Vis Sci. 2001;  42 439-446
  • 11 Cai J, Nelson K C, Wu M et al. Oxidative damage and protection of the RPE.  Prog Retin Eye Res. 2000;  19 205-221
  • 12 Winkler B S, Boulton M E, Gottsch J D et al. Oxidative damage and age-related macular degeneration.  Mol Vis. 1999;  5 32
  • 13 Chen M, Ona V O, Li M et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease.  Nat Med. 2000;  6 797-801
  • 14 Yrjanheikki J, Keinanen R, Pellikka M et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia.  Proc Natl Acad Sci U S A. 1998;  95 15769-15774
  • 15 Zhu S, Stavrovskaya I G, Drozda M et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice.  Nature. 2002;  417 74-78
  • 16 Sanchez Mejia R O, Ona V O, Li M et al. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction.  Neurosurgery. 2001;  48 1393-1399 ; discussion 1399 – 1401
  • 17 Popovic N, Schubart A, Goetz B D et al. Inhibition of autoimmune encephalomyelitis by a tetracycline.  Ann Neurol. 2002;  51 215-223
  • 18 Du Y, Ma Z, Lin S et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease.  Proc Natl Acad Sci U S A. 2001;  98 14669-14674
  • 19 Kernt M, Hirneiss C, Neubauer A S et al. Protektive Wirkung Blaulicht absorbierender IOLs auf das menschliche retinale Pigmentepithel.  Ophthalmologe. 2010;  107(2) 150-157
  • 20 Holz F G, Pauleikhoff D, Klein R et al. Pathogenesis of lesions in late age-related macular disease.  Am J Ophthalmol. 2004;  137 504-510
  • 21 Sparrow J R, Cai B. Blue light-induced apoptosis of A 2E-containing RPE: involvement of caspase-3 and protection by Bcl-2.  Invest Ophthalmol Vis Sci. 2001;  42 1356-1362
  • 22 Barishak Y R. In vitro behaviour of the pigmented cells of the retina and uvea of the adult human eye.  Acta Ophthalmol. 1960;  38 339-346
  • 23 Flood M T, Gouras P, Kjeldbye H. Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro.  Invest Ophthalmol Vis Sci. 1980;  19 1309-1320
  • 24 Nilsson S E, Sundelin S P, Wihlmark U et al. Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage.  Doc Ophthalmol. 2003;  106 13-16
  • 25 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.  J Immunol Methods. 1983;  65 55-63
  • 26 Kernt M, Neubauer A S, Liegl R et al. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression.  J Cataract Refract Surg. 2009;  35 354-362
  • 27 Nishikawa T, Edelstein D, Du X L et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.  Nature. 2000;  404 787-790
  • 28 Kernt M, Hirneiss C, Neubauer A S et al. Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP).  Br J Ophthalmol. 2010;  94 940-946
  • 29 Kernt M, Hirneiss C, Wolf A et al. Indocyanine green increases light-induced oxidative stress, senescence, and matrix metalloproteinases 1 and 3 in human RPE cells.  Acta Ophthalmol. 2010;  Jul. 29. Epub ahead of print
  • 30 Resnikoff S, Pascolini D, Etya’ale D et al. Global data on visual impairment in the year 2002.  Bull World Health Organ. 2004;  82 844-851
  • 31 Ferris 3 rd F L, Fine S L, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy.  Arch Ophthalmol. 1984;  102 1640-1642
  • 32 Congdon N, O’Colmain B, Klaver C C et al. Causes and prevalence of visual impairment among adults in the United States.  Arch Ophthalmol. 2004;  122 477-485
  • 33 Knudtson M D, Klein R, Klein B E et al. Location of lesions associated with age-related maculopathy over a 10-year period: the Beaver Dam Eye Study.  Invest Ophthalmol Vis Sci. 2004;  45 2135-2142
  • 34 Algvere P V, Marshall J, Seregard S. Age-related maculopathy and the impact of blue light hazard.  Acta Ophthalmol Scand. 2006;  84 4-15
  • 35 Chow C K, Chen L H, Thacker R R et al. Dietary vitamin E and pulmonary biochemical responses of rats to cigarette smoking.  Environ Res. 1984;  34 8-17
  • 36 Chow C K, Thacker R R, Changchit C et al. Lower levels of vitamin C and carotenes in plasma of cigarette smokers.  J Am Coll Nutr. 1986;  5 305-312
  • 37 Church D F, Pryor W A. Free-radical chemistry of cigarette smoke and its toxicological implications.  Environ Health Perspect. 1985;  64 111-126
  • 38 Dorey C K, Delori F C, Akeo K. Growth of cultured RPE and endothelial cells is inhibited by blue light but not green or red light.  Curr Eye Res. 1990;  9 549-559
  • 39 Demontis G C, Longoni B, Marchiafava P L. Molecular steps involved in light-induced oxidative damage to retinal rods.  Invest Ophthalmol Vis Sci. 2002;  43 2421-2427
  • 40 Grimm C, Wenzel A, Williams T et al. Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching.  Invest Ophthalmol Vis Sci. 2001;  42 497-505
  • 41 Hafezi F, Marti A, Munz K et al. Light-induced apoptosis: differential timing in the retina and pigment epithelium.  Exp Eye Res. 1997;  64 963-970
  • 42 Jin G F, Hurst J S, Godley B F. Hydrogen peroxide stimulates apoptosis in cultured human retinal pigment epithelial cells.  Curr Eye Res. 2001;  22 165-173
  • 43 Katz M L. Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration.  Arch Gerontol Geriatr. 2002;  34 359-370
  • 44 Levine A J. p53, the cellular gatekeeper for growth and division.  Cell. 1997;  88 323-331
  • 45 Miyashita T, Reed J C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.  Cell. 1995;  80 293-299
  • 46 Hockenbery D M. The bcl-2 oncogene and apoptosis.  Semin Immunol. 1992;  4 413-420
  • 47 Klein N C, Cunha B A. Tetracyclines.  Med Clin North Am. 1995;  79 789-801
  • 48 Ryan M E, Greenwald R A, Golub L M. Potential of tetracyclines to modify cartilage breakdown in osteoarthritis.  Curr Opin Rheumatol. 1996;  8 238-247
  • 49 Wirostko E, Wirostko W J, Wirostko B M. Age-related macular degeneration is an inflammatory disease possibly treatable with minocycline.  Acta Ophthalmol Scand. 2004;  82 243-244
  • 50 Kernt M, Neubauer A S, Eibl K H et al. Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2.  Clin Ophthalmol. 2010;  4 591-604
  • 51 Cao Y, Wei H, Pfaffl M et al. Apoptosis of human trabecular meshwork cells induced by transforming growth factor-beta2 in vitro.  J Huazhong Univ Sci Technolog Med Sci. 2004;  24 87-89, 94
  • 52 Kumar D M, Agarwal N. Oxidative stress in glaucoma: a burden of evidence.  J Glaucoma. 2007;  16 334-343

PD Dr. Marcus Kernt

Augenklinik, Ludwig-Maximilians-Universität München

Mathildenstr.8

80336 München

Phone: ++ 49/89/51 60 38 11

Fax: ++ 49/89/51 60 51 60

Email: marcus.kernt@med.uni-muenchen.de