Zusammenfassung
Hintergrund: Lichtinduzierter oxidativer Stress wird als mögliche Ursachen degenerativer Veränderungen im retinalen Pigmentepithel (RPE) bei der altersabhängigen Makuladegeneration (AMD) angesehen. Diese Studie untersucht den Einfluss von Licht auf die Induktion von intrazellulären freien Sauerstoffradikalen (ROS) und Apoptose im menschlichen RPE sowie mögliche anti-apoptotische, zytoprotektive Wirkungen des Tetrazyklin-Antibiotikums Minocyclin. Methoden: Kulturen primärer humaner RPE-Zellen wurden mit weißem Licht bestrahlt oder oxidativem Stress ausgesetzt (600 µM H 2 O2 ) und zusätzlich mit Minocyclin behandelt. Es wurden Vitalität, Induktion von Apoptose und intrazellulären ROS sowie die Expression von BAX und Bcl-2 auf zellulärer Ebene bestimmt (RT-PCR/Western Blot/ELISA). Ergebnisse: Sowohl die Bestrahlung der RPE Zellen mit weißem Licht als auch die H 2 O2 -Exposition führten zu einer bestrahlungszeitabhängigen Abnahme der Vitalität und der Expression von Bcl-2 sowie zu einer Induktion von Apoptose, ROS und der Bildung von BAX. Diese Zellschädigung wurde unter bestimmten Bedingungen durch Behandlung der Zellen mit Minocyclin reduziert. Schlussfolgerung: Diese Studie zeigt, dass Minocyclin humane RPE-Zellen wirkungsvoll vor oxidativem Stress schützt. Aufgrund seiner photosensibilisierenden Wirkung muss die mögliche Anwendung von Minocyclin bei AMD aber weiter evaluiert werden.
Abstract
Background: Light-induced oxidative stress is an suggested reason for retinal pigment epithelium (RPE) degeneration in age-related macular degeneration (AMD). This study investigates the influence of light on intracellular reactive oxygen species (ROS) and apoptosis in the human RPE and potential cytoprotective effects of the tetracycline antibiotic minocycline. Methods: Primary human RPE cells were either pre- or post-incubated with minocycline and then exposed to white light or oxidative stress (600 µM, H 2 O2 ). Then viability, induction of intracellular reactive oxygen species (ROS), apoptosis and cell death was determined. Expression of apoptotic BAX and anti-apoptotic Bcl-2 protein and their mRNA were determined by RT-PCR and Western blot analysis. Results: Both light exposure and oxidative stress decreased RPE cell viability and Bcl-2 expression and increased intracellular ROS, apoptotic cell death, and BAX expression. Minocycline reduced these effects under certain conditions. Conclusions: This study demonstrates that minocycline effectively protects human RPE cells against oxidative damage. However, in the light of minocycline’s photosensitising properties its potential role in AMD treatment needs further evaluation.
Schlüsselwörter
oxidativer Stress - Minocyclin - AMD - Apoptose - Zytoprotektion
Key words
oxidative stress - Pharmacology - AMD - apoptosis - minocycline
Literatur
1
Hawkins B S, Bird A, Klein R et al.
Epidemiology of age-related macular degeneration.
Mol Vis.
1999;
5
26
2
Klein R, Klein B E, Jensen S C et al.
Age-related maculopathy in a multiracial United States population: the National Health and Nutrition Examination Survey III.
Ophthalmology.
1999;
106
1056-1065
3
Rosenfeld P J, Brown D M, Heier J S et al.
Ranibizumab for neovascular age-related macular degeneration.
N Engl J Med.
2006;
355
1419-1431
4
Rosenfeld P J, Fung A E, Puliafito C A.
Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion.
Ophthalmic Surg Lasers Imaging.
2005;
36
336-339
5
A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9.
Arch Ophthalmol.
2001;
119
1439-1452
6
Klein R, Peto T, Bird A et al.
The epidemiology of age-related macular degeneration.
Am J Ophthalmol.
2004;
137
486-495
7
Schmidt S, Hauser M A, Scott W K et al.
Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration.
Am J Hum Genet.
2006;
78
852-864
8
Cruickshanks K J, Klein R, Klein B E.
Sunlight and age-related macular degeneration. The Beaver Dam Eye Study.
Arch Ophthalmol.
1993;
111
514-518
9
Klein R, Klein B E, Linton K L.
Prevalence of age-related maculopathy. The Beaver Dam Eye Study.
Ophthalmology.
1992;
99
933-943
10
Beatty S, Murray I J, Henson D B et al.
Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population.
Invest Ophthalmol Vis Sci.
2001;
42
439-446
11
Cai J, Nelson K C, Wu M et al.
Oxidative damage and protection of the RPE.
Prog Retin Eye Res.
2000;
19
205-221
12
Winkler B S, Boulton M E, Gottsch J D et al.
Oxidative damage and age-related macular degeneration.
Mol Vis.
1999;
5
32
13
Chen M, Ona V O, Li M et al.
Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease.
Nat Med.
2000;
6
797-801
14
Yrjanheikki J, Keinanen R, Pellikka M et al.
Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia.
Proc Natl Acad Sci U S A.
1998;
95
15769-15774
15
Zhu S, Stavrovskaya I G, Drozda M et al.
Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice.
Nature.
2002;
417
74-78
16
Sanchez Mejia R O, Ona V O, Li M et al.
Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction.
Neurosurgery.
2001;
48
1393-1399
; discussion 1399 – 1401
17
Popovic N, Schubart A, Goetz B D et al.
Inhibition of autoimmune encephalomyelitis by a tetracycline.
Ann Neurol.
2002;
51
215-223
18
Du Y, Ma Z, Lin S et al.
Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease.
Proc Natl Acad Sci U S A.
2001;
98
14669-14674
19
Kernt M, Hirneiss C, Neubauer A S et al.
Protektive Wirkung Blaulicht absorbierender IOLs auf das menschliche retinale Pigmentepithel.
Ophthalmologe.
2010;
107(2)
150-157
20
Holz F G, Pauleikhoff D, Klein R et al.
Pathogenesis of lesions in late age-related macular disease.
Am J Ophthalmol.
2004;
137
504-510
21
Sparrow J R, Cai B.
Blue light-induced apoptosis of A 2E-containing RPE: involvement of caspase-3 and protection by Bcl-2.
Invest Ophthalmol Vis Sci.
2001;
42
1356-1362
22
Barishak Y R.
In vitro behaviour of the pigmented cells of the retina and uvea of the adult human eye.
Acta Ophthalmol.
1960;
38
339-346
23
Flood M T, Gouras P, Kjeldbye H.
Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro.
Invest Ophthalmol Vis Sci.
1980;
19
1309-1320
24
Nilsson S E, Sundelin S P, Wihlmark U et al.
Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage.
Doc Ophthalmol.
2003;
106
13-16
25
Mosmann T.
Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.
J Immunol Methods.
1983;
65
55-63
26
Kernt M, Neubauer A S, Liegl R et al.
Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression.
J Cataract Refract Surg.
2009;
35
354-362
27
Nishikawa T, Edelstein D, Du X L et al.
Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.
Nature.
2000;
404
787-790
28
Kernt M, Hirneiss C, Neubauer A S et al.
Minocycline is cytoprotective in human corneal endothelial cells and induces anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and X-linked inhibitor of apoptosis (XIAP).
Br J Ophthalmol.
2010;
94
940-946
29
Kernt M, Hirneiss C, Wolf A et al.
Indocyanine green increases light-induced oxidative stress, senescence, and matrix metalloproteinases 1 and 3 in human RPE cells.
Acta Ophthalmol.
2010;
Jul. 29. Epub ahead of print
30
Resnikoff S, Pascolini D, Etya’ale D et al.
Global data on visual impairment in the year 2002.
Bull World Health Organ.
2004;
82
844-851
31
Ferris 3 rd F L, Fine S L, Hyman L.
Age-related macular degeneration and blindness due to neovascular maculopathy.
Arch Ophthalmol.
1984;
102
1640-1642
32
Congdon N, O’Colmain B, Klaver C C et al.
Causes and prevalence of visual impairment among adults in the United States.
Arch Ophthalmol.
2004;
122
477-485
33
Knudtson M D, Klein R, Klein B E et al.
Location of lesions associated with age-related maculopathy over a 10-year period: the Beaver Dam Eye Study.
Invest Ophthalmol Vis Sci.
2004;
45
2135-2142
34
Algvere P V, Marshall J, Seregard S.
Age-related maculopathy and the impact of blue light hazard.
Acta Ophthalmol Scand.
2006;
84
4-15
35
Chow C K, Chen L H, Thacker R R et al.
Dietary vitamin E and pulmonary biochemical responses of rats to cigarette smoking.
Environ Res.
1984;
34
8-17
36
Chow C K, Thacker R R, Changchit C et al.
Lower levels of vitamin C and carotenes in plasma of cigarette smokers.
J Am Coll Nutr.
1986;
5
305-312
37
Church D F, Pryor W A.
Free-radical chemistry of cigarette smoke and its toxicological implications.
Environ Health Perspect.
1985;
64
111-126
38
Dorey C K, Delori F C, Akeo K.
Growth of cultured RPE and endothelial cells is inhibited by blue light but not green or red light.
Curr Eye Res.
1990;
9
549-559
39
Demontis G C, Longoni B, Marchiafava P L.
Molecular steps involved in light-induced oxidative damage to retinal rods.
Invest Ophthalmol Vis Sci.
2002;
43
2421-2427
40
Grimm C, Wenzel A, Williams T et al.
Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching.
Invest Ophthalmol Vis Sci.
2001;
42
497-505
41
Hafezi F, Marti A, Munz K et al.
Light-induced apoptosis: differential timing in the retina and pigment epithelium.
Exp Eye Res.
1997;
64
963-970
42
Jin G F, Hurst J S, Godley B F.
Hydrogen peroxide stimulates apoptosis in cultured human retinal pigment epithelial cells.
Curr Eye Res.
2001;
22
165-173
43
Katz M L.
Potential role of retinal pigment epithelial lipofuscin accumulation in age-related macular degeneration.
Arch Gerontol Geriatr.
2002;
34
359-370
44
Levine A J.
p53, the cellular gatekeeper for growth and division.
Cell.
1997;
88
323-331
45
Miyashita T, Reed J C.
Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.
Cell.
1995;
80
293-299
46
Hockenbery D M.
The bcl-2 oncogene and apoptosis.
Semin Immunol.
1992;
4
413-420
47
Klein N C, Cunha B A.
Tetracyclines.
Med Clin North Am.
1995;
79
789-801
48
Ryan M E, Greenwald R A, Golub L M.
Potential of tetracyclines to modify cartilage breakdown in osteoarthritis.
Curr Opin Rheumatol.
1996;
8
238-247
49
Wirostko E, Wirostko W J, Wirostko B M.
Age-related macular degeneration is an inflammatory disease possibly treatable with minocycline.
Acta Ophthalmol Scand.
2004;
82
243-244
50
Kernt M, Neubauer A S, Eibl K H et al.
Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2.
Clin Ophthalmol.
2010;
4
591-604
51
Cao Y, Wei H, Pfaffl M et al.
Apoptosis of human trabecular meshwork cells induced by transforming growth factor-beta2 in vitro.
J Huazhong Univ Sci Technolog Med Sci.
2004;
24
87-89, 94
52
Kumar D M, Agarwal N.
Oxidative stress in glaucoma: a burden of evidence.
J Glaucoma.
2007;
16
334-343
PD Dr. Marcus Kernt
Augenklinik, Ludwig-Maximilians-Universität München
Mathildenstr.8
80336 München
Phone: ++ 49/89/51 60 38 11
Fax: ++ 49/89/51 60 51 60
Email: marcus.kernt@med.uni-muenchen.de