Zusammenfassung
Ziel: Studienziel war es, den Zusammenhang von ultrasonografisch ermittelten Messungen des linksventrikulären Myokards basierend auf „Feature tracking“-Technik und dem Schwangerschaftsalter zu evaluieren. Material und Methoden: Globale und segmentale, longitudinale Strain-, Strain-rate- und Geschwindigkeitsmesswerte des linksventrikulären Myokards wurden mittels einer neuen „Feature tracking“-Technik für jedes Schwangerschaftsalter an 150 gesunden Feten (13. – 39. Schwangerschaftswoche) untersucht. Die Inter- und Intraobserver-Variabilität wurden zusätzlich analysiert. Ergebnisse: Die globale longitudinale maximale systolische Geschwindigkeit wies einen segmentalen Basis-Apex-Gradienten auf (p < 0,001). Von der 13. – 39. Schwangerschaftswoche nahmen die globalen und segmentalen longitudinalen maximalen systolischen Geschwindigkeiten signifikant zu (p < 0,001), die globalen longitudinalen maximalen systolischen Strain-Werte blieben konstant (p = 0,34) und die entsprechenden Strain-rate-Werte wiesen lediglich einen abnehmenden Trend auf (p = 0,045). Die Inter- und Intraobserver-Variabilität für die globalen linksventrikulären maximalen Strain, Strain rate und Geschwindigkeitsmessungen waren akzeptabel. Die Standardabweichungen der Messfehler zwischen den beiden Untersuchern betrugen 2,5 %, 0,7 sec–1 und 0,5 cm/sec. Schlussfolgerung: Die globalen myokardialen maximalen Geschwindigkeiten des linken Ventrikels nehmen mit zunehmendem Schwangerschaftsalter signifikant zu, während die entsprechenden Strain- und Strain-rate-Messwerte annährend konstant bleiben. Diese neue winkelunabhängige nicht invasive Technik eröffnet einen neuen objektiven Ansatz, die globale und segmentale myokardiale Performance zu quantifizieren.
Abstract
Purpose: The aim of this study was to evaluate the correlation of feature-tracking-derived measurements of the left ventricular myocardium in healthy fetuses with gestational age. Materials and Methods: The global and segmental longitudinal peak systolic strain, strain rate and velocity values of the left ventricular myocardium for each gestational age were assessed by a novel feature tracking technique in 150 healthy fetuses (gestational age range 13 – 39 weeks of gestation). The interobserver and intraobserver variability was analyzed. Results: The global longitudinal peak systolic velocity exhibited a segmental base to apex gradient (p < 0.001). From 13 to 39 weeks of gestation, the global and segmental longitudinal peak systolic velocities increased significantly throughout gestation (p < 0.001), while the global longitudinal peak systolic strain remained constant (p = 0.34) and the strain rate exhibited only a tendency to decrease (p = 0.045). The interobserver and intraobserver variability of the global LV peak systolic strain, strain rate and velocity was acceptable. The standard deviations of measurement error between the two observers were 2.5 %, 0.7 s–1 and 0.5 cm/sec, respectively. Conclusion: The global myocardial peak systolic velocities of the left ventricle increase with gestational age, while the global myocardial peak systolic strain and strain rate remained nearly constant throughout gestation. This novel angle-independent, noninvasive technique offers a new objective approach to quantify global and segmental fetal myocardial performance throughout gestation.
Key words
cardiac - heart - echocardiography - ultrasound 2D
References
1
Thomas G.
Tissue Doppler echocardiography – a case of right tool, wrong use.
Cardiovasc Ultrasound.
2004;
2
12
2
Marwick T H.
Measurement of strain and strain rate by echocardiography: ready for prime time?.
J Am Coll Cardiol.
2006;
47
1313-1327
3
Younoszai A K, Saudek D E, Emery S P et al.
Evaluation of myocardial mechanics in the fetus by velocity vector imaging.
J Am Soc Echocardiogr.
2008;
21
470-474
4
Pirat B, Khoury D S, Hartley C J et al.
A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion.
J Am Coll Cardiol.
2008;
51
651-659
5
Barker P C, Houle H, Li J S et al.
Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging.
Echocardiography.
2009;
26
28-36
6
Peng Q H, Zhou Q C, Zeng S et al.
Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging.
Prenat Diagn.
2009;
29
1149-1155
7
Van Mieghem T, Giusca S, DeKoninck P et al.
Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome.
J Am Soc Echocardiogr.
2010;
23
301-308
8
Willruth A M, Geipel A K, Fimmers R et al.
Assessment of right ventricular global and regional longitudinal peak systolic strain, strain rate and velocity in healthy fetuses and impact of gestational age using a novel speckle/feature tracking based algorithm.
Ultrasound Obstet Gynecol.
2010;
; [Epub ahead of print]
9
D’hooge J, Bijnens B, Jamal F et al.
High frame rate myocardial integrated backscatter. Does this change our understanding of this acoustic parameter?.
Eur J Echocardiogr.
2000;
1
32-41
10
D’hooge J, Heimdal A, Jamal F et al.
Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations.
Eur J Echocardiogr.
2000;
1
154-170
11
Urheim S, Edvardsen T, Torp H et al.
Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function.
Circulation.
2000;
102
1158-1164
12
Royston P, Wright E M.
How to construct ‘normal ranges’ for fetal variables.
Ultrasound Obstet Gynecol.
1998;
11
30-38
13
Bland J M, Altman D G.
Measurement error.
BMJ.
1996;
312
1654
14
Perles Z, Nir A, Gavri S et al.
Assessment of fetal myocardial performance using myocardial deformation analysis.
Am J Cardiol.
2007;
99
993-996
15
Gilman G, Khandheria B K, Hagen M E et al.
Strain rate and strain: a step-by-step approach to image and data acquisition.
J Am Soc Echocardiogr.
2004;
17
1011-1020
16
Kapusta L, Thijssen J M, Cuypers M H et al.
Assessment of myocardial velocities in healthy children using tissue Doppler imaging.
Ultrasound Med Biol.
2000;
26
229-237
17
Kutty S, Deatsman S L, Nugent M L et al.
Assessment of regional right ventricular velocities, strain, and displacement in normal children using velocity vector imaging.
Echocardiography.
2008;
25
294-307
18
Weidemann F, Kowalski M, D’hooge J et al.
Doppler myocardial imaging. A new tool to assess regional inhomogeneity in cardiac function.
Basic Res Cardiol.
2001;
96
595-605
19
Ta-Shma A, Perles Z, Gavri S et al.
Analysis of segmental and global function of the fetal heart using novel automatic functional imaging.
J Am Soc Echocardiogr.
2008;
21
146-150
20
Di Salvo G, Russo M G, Paladini D et al.
Quantification of regional left and right ventricular longitudinal function in 75 normal fetuses using ultrasound-based strain rate and strain imaging.
Ultrasound Med Biol.
2005;
31
1159-1162
21
Greenbaum R A, Ho S Y, Gibson D G et al.
Left ventricular fibre architecture in man.
Br Heart J.
1981;
45
248-263
22
Kiserud T, Acharya G.
The fetal circulation.
Prenat Diagn.
2004;
24
1049-1059
23
Gardiner H M.
Response of the fetal heart to changes in load: from hyperplasia to heart failure.
Heart.
2005;
91
871-873
24
Rudolph A M.
Myocardial growth before and after birth: clinical implications.
Acta Paediatr.
2000;
89
129-133
25
Ahuja P, Sdek P, MacLellan W R.
Cardiac myocyte cell cycle control in development, disease, and regeneration.
Physiol Rev.
2007;
87
521-544
26
Rosner A, Bijnens B, Hansen M et al.
Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate.
Eur J Echocardiogr.
2009;
10
271-277
Dr. Arne Michael Willruth
Department of Obstetrics and Prenatal Medicine, University of Bonn
Sigmund-Freud-Str. 25
53105 Bonn
Germany
Phone: ++ 49/2 28/28 71 50 82
Fax: ++ 49/2 28/28 71 50 81
Email: arnewillruth@hotmail.com