RSS-Feed abonnieren
DOI: 10.1055/s-0029-1246111
© Georg Thieme Verlag KG Stuttgart · New York
Techniken der kontrastmittelfreien MR-Angiografie
Nonenhanced MR Angiography TechniquesPublikationsverlauf
eingereicht: 20.10.2010
angenommen: 4.2.2011
Publikationsdatum:
25. März 2011 (online)
Zusammenfassung
Nicht zuletzt vor dem Hintergrund der potenziellen Risiken für eine nephrogene systemische Fibrose (NSF) nach Applikation von gadoliniumhaltigem Kontrastmittel hat die kontrastmittelfreie MR-Angiografie (Non-KM-MRA) in den letzten Jahren wieder zunehmend an Bedeutung gewonnen. Neben den bereits etablierten Time-Of-Flight- und Phasenkontrasttechniken (TOF und PC) werden dabei zunehmend alternative Untersuchungsstrategien eingesetzt. Hervorzuheben sind hier auf Balanced-Steady-State-Free-Precession- und Turbo-Spin-Echo-Sequenzen (bSSFP und TSE) basierende MR-Verfahren, die zum Teil mit Arterial Spin Labeling (ASL) Methoden kombiniert werden. Im Rahmen dieser Übersichtsarbeit sollen die Prinzipien der unterschiedlichen Untersuchungstechniken sowie ihr klinischer Stellenwert dargestellt werden. Zudem werden auch sich noch im Entwicklungsstadium befindliche Non-KM-MRA Techniken vorgestellt.
Abstract
Especially in regard to the potential risks for the development of nephrogenic systemic fibrosis (NSF) following the administration of Gadolinium-based contrast material, nonenhanced MR angiography (MRA) methods are becoming ever more important. Besides well-established time-of-flight (TOF) and phase-contrast (PC) MRA, alternative imaging techniques based on balanced steady-state free precession (bSSFP) and turbo-spin-echo (TSE) sequences are increasingly used in combination with or without arterial spin labeling (ASL) strategies. This article provides an overview of the principles and clinical values of different nonenhanced MRA techniques. In addition, recent nonenhanced MRA developments are presented.
Key words
MR angiography - technical aspects - arteries
Literatur
- 1 Wedeen V J, Meuli R A, Edelman R R et al. Projective imaging of pulsatile flow with magnetic resonance. Science. 1985; 230 946-948
- 2 Dumoulin C L, Cline H E, Souza S P et al. Three-dimensional time-of-flight magnetic resonance angiography using spin saturation. Magn Reson Med. 1989; 11 35-46
- 3 Dumoulin C L, Hart H R. Magnetic resonance angiography. Radiology. 1986; 161 717-720
- 4 Edelman R R. MR angiography: present and future. Am J Roentgenol. 1993; 161 1-11
- 5 Keller P J, Drayer B P, Fram E K et al. MR angiography with two-dimensional acquisition and three-dimensional display. Work in progress. Radiology. 1989; 173 527-532
- 6 Prince M R, Yucel E K, Kaufman J A et al. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. 1993; 3 877-881
- 7 Prince M R, Arnoldus Jr C, Frisoli J K. Nephrotoxicity of high-dose gadolinium compared with iodinated contrast. J Magn Reson Imaging. 1996; 6 162-166
- 8 Rofsky N M, Weinreb J C, Bosniak M A et al. Renal lesion characterization with gadolinium-enhanced MR imaging: efficacy and safety in patients with renal insufficiency. Radiology. 1991; 180 85-89
- 9 Cowper S E, Robin H S, Steinberg S M et al. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet. 2000; 356 1000-1001
- 10 Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?. Nephrol Dial Transplant. 2006; 21 1104-1108
- 11 Clorius S, Technau K, Watter T et al. Nephrogenic systemic fibrosis following exposure to gadolinium-containing contrast agent. Clin Nephrol. 2007; 68 249-252
- 12 Collidge T A, Thomson P C, Mark P B et al. Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort. Radiology. 2007; 245 168-175
- 13 Heinrich M, Uder M. [Nephrogenic systemic fibrosis after application of gadolinium-based contrast agents – a status paper]. Fortschr Röntgenstr. 2007; 179 613-617
- 14 Marckmann P, Skov L, Rossen K et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. 2006; 17 2359-2362
- 15 Prince M R, Zhang H, Morris M et al. Incidence of nephrogenic systemic fibrosis at two large medical centers. Radiology. 2008; 248 807-816
- 16 Rydahl C, Thomsen H S, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol. 2008; 43 141-144
- 17 Prince M R, Zhang H L, Prowda J C et al. Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics. 2009; 29 1565-1574
- 18 Miyazaki M, Lee V S. Nonenhanced MR angiography. Radiology. 2008; 248 20-43
- 19 Haase A, Frahm J, Matthaei D et al. Flash Imaging – Rapid Nmr Imaging Using Low Flip-Angle Pulses. J Magn Reson. 1986; 67 258-266
- 20 Atkinson D, Brantzawadzki M, Gillan G et al. Improved Mr-Angiography – Magnetization-Transfer Suppression with Variable Flip Angle Excitation and Increased Resolution. Radiology. 1994; 190 890-894
- 21 Gullberg G T, Wehrli F W, Shimakawa A et al. MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted images from transaxial sections. Radiology. 1987; 165 241-246
- 22 Lewin J S, Laub G, Hausmann R. Three-dimensional time-of-flight MR angiography: applications in the abdomen and thorax. Radiology. 1991; 179 261-264
- 23 Ruggieri P M, Laub G A, Masaryk T J et al. Intracranial circulation: pulse-sequence considerations in three-dimensional (volume) MR angiography. Radiology. 1989; 171 785-791
- 24 Blatter D D, Parker D L, Robison R O. Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility. Radiology. 1991; 179 805-811
- 25 Bosmans H, Marchal G, Lukito G et al. Time-of-Flight Mr-Angiography of the Brain – Comparison of Acquisition Techniques in Healthy-Volunteers. Am J Roentgenol. 1995; 164 161-167
- 26 Choi C G, Lee D H, Lee J H et al. Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3 T. Am J Neuroradiol. 2007; 28 439-446
- 27 Willinek W A, Born M, Simon B et al. Time-of-flight MR angiography: Comparison of 3.0-T imaging and 1.5-T imaging – Initial experience. Radiology. 2003; 229 913-920
- 28 Yamada N, Hayashi K, Murao K et al. Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive to residual flow than is digital subtraction angiography. Am J Neuroradiol. 2004; 25 1154-1157
- 29 Anzalone N, Scomazzoni F, Cirillo M et al. Follow-up of coiled cerebral aneurysms at 3 T: comparison of 3D time-of-flight MR angiography and contrast-enhanced MR angiography. Am J Neuroradiol. 2008; 29 1530-1536
- 30 Schaafsma J D, Koffijberg H, Buskens E et al. Cost-effectiveness of magnetic resonance angiography versus intra-arterial digital subtraction angiography to follow-up patients with coiled intracranial aneurysms. Stroke. 2010; 41 1736-1742
- 31 Schaafsma J D, Velthuis B K, Majoie C B et al. Intracranial aneurysms treated with coil placement: test characteristics of follow-up MR angiography – multicenter study. Radiology. 2010; 256 209-218
- 32 Babiarz L S, Romero J M, Murphy E K et al. Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight MR angiography for determining > or = 70 % internal carotid artery stenosis. Am J Neuroradiol. 2009; 30 761-768
- 33 Carpenter J P, Baum R A, Holland G A et al. Peripheral vascular surgery with magnetic resonance angiography as the sole preoperative imaging modality. J Vasc Surg. 1994; 20 861-869
- 34 McCauley T R, Monib A, Dickey K W et al. Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology. 1994; 192 351-357
- 35 Firmin D N, Nayler G L, Kilner P J et al. The application of phase shifts in NMR for flow measurement. Magn Reson Med. 1990; 14 230-241
- 36 Pelc N J, Bernstein M A, Shimakawa A et al. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging. 1991; 1 405-413
- 37 Fera F, Bono F, Messina D et al. Comparison of different MR venography techniques for detecting transverse sinus stenosis in idiopathic intracranial hypertension. J Neurol. 2005; 252 1021-1025
- 38 Liauw L, Buchem M A, Spilt van A et al. MR angiography of the intracranial venous system. Radiology. 2000; 214 678-682
- 39 Steffens J C, Link J, Schwarzenberg H et al. Lower extremity occlusive disease: diagnostic imaging with a combination of cardiac-gated 2D phase-contrast and cardiac-gated 2D time-of-flight MRA. J Comput Assist Tomogr. 1999; 23 7-12
- 40 Bisschops R H, Klijn C J, Kappelle L J et al. Collateral flow and ischemic brain lesions in patients with unilateral carotid artery occlusion. Neurology. 2003; 60 1435-1441
- 41 Debatin J F, Ting R H, Wegmuller H et al. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology. 1994; 190 371-378
- 42 Mohajer K, Zhang H, Gurell D et al. Superficial femoral artery occlusive disease severity correlates with MR cine phase-contrast flow measurements. J Magn Reson Imaging. 2006; 23 355-360
- 43 Schoenberg S O, Knopp M V, Bock M et al. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology. 1997; 203 45-53
- 44 Schoenberg S O, Knopp M V, Londy F et al. Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J Am Soc Nephrol. 2002; 13 158-169
- 45 Vanninen R, Koivisto K, Tulla H et al. Hemodynamic effects of carotid endarterectomy by magnetic resonance flow quantification. Stroke. 1995; 26 84-89
- 46 Devos D G, Kilner P J. Calculations of cardiovascular shunts and regurgitation using magnetic resonance ventricular volume and aortic and pulmonary flow measurements. Eur Radiol. 2010; 20 410-421
- 47 Gatehouse P D, Keegan J, Crowe L A et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005; 15 2172-2184
- 48 Goffinet C, Kersten V, Pouleur A C et al. Comprehensive assessment of the severity and mechanism of aortic regurgitation using multidetector CT and MR. Eur Radiol. 2010; 20 326-336
- 49 Kon M W, Myerson S G, Moat N E et al. Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis. 2004; 13 600-607
- 50 Powell A J, Tsai-Goodman B, Prakash A et al. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003; 91 1523-1525, A 1529
- 51 Rominger M B, Kluge A, Dinkel H P et al. [Comparison between biventricular cine MRI and MR flow quantification in ascending aorta and pulmonary outflow tract for the assessment of intracardial shunt volumes]. Fortschr Röntgenstr. 2002; 174 1380-1386
- 52 Varaprasathan G A, Araoz P A, Higgins C B et al. Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded cine MR imaging. Radiographics. 2002; 22 895-905, discussion 905 – 896
- 53 Carr H J. Steady-state free precession in nuclear magnetic resonance. Phys Rev. 1958; 112 1693-1701
- 54 Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003; 13 2409-2418
- 55 Katoh M, Buecker A, Stuber M et al. Free-breathing renal MR angiography with steady-state free-precession (SSFP) and slab-selective spin inversion: initial results. Kidney Int. 2004; 66 1272-1278
- 56 Katoh M, Spuentrup E, Stuber M et al. Free-breathing renal magnetic resonance angiography with steady-state free-precession and slab-selective spin inversion combined with radial k-space sampling and water-selective excitation. Magnet Reson Med. 2005; 53 1228-1233
- 57 Lanzman R S, Kropil P, Schmitt P et al. Nonenhanced free-breathing ECG-gated steady-state free precession 3D MR angiography of the renal arteries: comparison between 1.5T and 3T. Am J Roentgenol. 2010; 194 794-798
- 58 Glockner J F, Takahashi N, Kawashima A et al. Non-contrast renal artery MRA using an inflow inversion recovery steady state free precession technique (Inhance): comparison with 3D contrast-enhanced MRA. J Magn Reson Imaging. 2010; 31 1411-1418
- 59 Coenegrachts K L, Hoogeveen R M, Vaninbroukx J A et al. High-spatial-resolution 3D balanced turbo field-echo technique for MR angiography of the renal arteries: initial experience. Radiology. 2004; 231 237-242
- 60 Herborn C U, Watkins D M, Runge V M et al. Renal arteries: comparison of steady-state free precession MR angiography and contrast-enhanced MR angiography. Radiology. 2006; 239 263-268
- 61 Wyttenbach R, Braghetti A, Wyss M et al. Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiography. Radiology. 2007; 245 186-195
- 62 Maki J H, Wilson G J, Eubank W B et al. Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated techniques vs. CE-MRA. J Magn Reson Imaging. 2007; 26 966-973
- 63 Maki J H, Wilson G J, Eubank W B et al. Navigator-gated MR angiography of the renal arteries: a potential screening tool for renal artery stenosis. Am J Roentgenol. 2007; 188 W540-W546
- 64 Lanzman R S, Voiculescu A, Walther C et al. ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology. 2009; 252 914-921
- 65 Liu X, Berg N, Sheehan J et al. Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology. 2009; 251 535-542
- 66 Krishnam M S, Tomasian A, Deshpande V et al. Noncontrast 3D steady-state free-precession magnetic resonance angiography of the whole chest using nonselective radiofrequency excitation over a large field of view: comparison with single-phase 3D contrast-enhanced magnetic resonance angiography. Invest Radiol. 2008; 43 411-420
- 67 Krishnam M S, Tomasian A, Malik S et al. Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases. Eur Radiol. 2010; 20 1311-1320
- 68 Amano Y, Takahama K, Kumita S. Noncontrast-Enhanced Three-Dimensional Magnetic Resonance Aortography of the Thorax at 3.0T Using Respiratory-Compensated T 1-Weighted k-Space Segmented Gradient-Echo Imaging With Radial Data Sampling Preliminary Study. Investigative Radiology. 2009; 44 548-552
- 69 Groth M, Henes F O, Bannas P et al. Intraindividual Comparison of Contrast-Enhanced MRI and Unenhanced SSFP Sequences of Stenotic and Non-stenotic Pulmonary Artery Diameters. Fortschr Röntgenstr. 2011; 183 47-53
- 70 Hui B K, Noga M L, Gan K D et al. Navigator-gated three-dimensional MR angiography of the pulmonary arteries using steady-state free precession. J Magn Reson Imaging. 2005; 21 831-835
- 71 Nguyen T D, Spincemaille P, Cham M D et al. Free-breathing 3D steady-state free precession coronary magnetic resonance angiography: comparison of diaphragm and cardiac fat navigators. J Magn Reson Imaging. 2008; 28 509-514
- 72 Pereles F S, McCarthy R M, Baskaran V et al. Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology. 2002; 223 270-274
- 73 Spuentrup E, Katoh M, Buecker A et al. Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with cartesian k-space sampling and cartesian gradient-echo coronary MR angiography – pilot study. Radiology. 2004; 231 581-586
- 74 Tengg-Kobligk von H, Ley-Zaporozhan J, Henninger V et al. Intraindividual assessment of the thoracic aorta using contrast and non-contrast-enhanced MR angiography. Fortschr Röntgenstr. 2009; 181 230-236
- 75 Katoh M, Spuntrup E, Kuehl H et al. Flow-targeted inversion-prepared b-TFE coronary MR angiography: initial results in patients. Fortschr Röntgenstr. 2009; 181 1050-1055
- 76 Sakuma H, Ichikawa Y, Suzawa N et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology. 2005; 237 316-321
- 77 Miyazaki M, Takai H, Sugiura S et al. Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology. 2003; 227 890-896
- 78 Lanzman R S, Blondin D, Schmitt P et al. Non-Enhanced 3D MR Angiography of the Lower Extremity using ECG-Gated TSE Imaging with Non-Selective Refocusing Pulses – Initial Experience. Fortschr Röntgenstr. 2010; 182 861-867
- 79 Lim R P, Hecht E M, Xu J et al. 3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J Magn Reson Imaging. 2008; 28 181-189
- 80 Miyazaki M, Sugiura S, Tateishi F et al. Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging. 2000; 12 776-783
- 81 Mohrs O K, Petersen S E, Heidt M C et al. High-resolution 3D non-contrast-enhanced, ECG-gated, multi-step MR angiography of the lower extremities: Comparison with contrast-enhanced MR angiography. Eur Radiol. 2011; 21 434-442
- 82 Xu J WP, Weale P, Gerhard L. et al .A novel non-contrast MR angiography technique using triggered non-selective refocused SPACE for improved spatial resolution and speed (abstr). In: Proceedings of the Sixteenth Meeting of the International Society for Magnetic Resonance in Medicine Berkeley. Calif: International society for Magnetic Resonance in Medicine; 2008. 730
- 83 Atanasova I P, Storey P, Lim R P. et al .Effect of flip angle evolution on flow sensitivities in ECG-gated fast spin echo MRA methods at 3 T (abstr). In: Proceedings of the Seventeenth Meeting of the International Society for Magnetic Resonance in Medicine Berkeley. Calif: International society for Magnetic Resonance in Medicine; 2009. 422
- 84 Hadizadeh D R, Falkenhausen von M, Gieseke J et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology. 2008; 246 205-213
- 85 Lim R P, Shapiro M, Wang E Y et al. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. Am J Neuroradiol. 2008; 29 1847-1854
- 86 Willinek W A, Hadizadeh D R, Falkenhausen von M et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0 T. J Magn Reson Imaging. 2008; 27 1455-1460
- 87 Bi X, Weale P, Schmitt P et al. Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: a feasibility study. Magn Reson Med. 2010; 63 835-841
- 88 Hori M, Shiraga N, Watanabe Y et al. Time-Resolved Three-Dimensional Magnetic Resonance Digital Subtraction Angiography Without Contrast Material in the Brain: Initial Investigation. Journal of Magnetic Resonance Imaging. 2009; 30 214-218
- 89 Yan L, Wang S, Zhuo Y et al. Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true FISP-based spin tagging with alternating radiofrequency. Radiology. 2010; 256 270-279
- 90 Kim S G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995; 34 293-301
- 91 Edelman R R, Sheehan J J, Dunkle E et al. Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: Technical considerations and clinical feasibility. Magn Reson Med. 2010; 63 951-958
Dr. Rotem S. Lanzman
Institut für Diagnostische und Interventionelle Radiologie
Uniklinik Düsseldorf
Düsseldorf
40225 Düsseldorf
Telefon: ++ 49/2 11/8 11 77 54
Fax: ++ 49/2 11/8 11 69 28
eMail: rotemshlomo@yahoo.de