RSS-Feed abonnieren
DOI: 10.1055/s-0029-1246111
© Georg Thieme Verlag KG Stuttgart · New York
Techniken der kontrastmittelfreien MR-Angiografie
Nonenhanced MR Angiography TechniquesPublikationsverlauf
eingereicht: 20.10.2010
angenommen: 4.2.2011
Publikationsdatum:
25. März 2011 (online)

Zusammenfassung
Nicht zuletzt vor dem Hintergrund der potenziellen Risiken für eine nephrogene systemische Fibrose (NSF) nach Applikation von gadoliniumhaltigem Kontrastmittel hat die kontrastmittelfreie MR-Angiografie (Non-KM-MRA) in den letzten Jahren wieder zunehmend an Bedeutung gewonnen. Neben den bereits etablierten Time-Of-Flight- und Phasenkontrasttechniken (TOF und PC) werden dabei zunehmend alternative Untersuchungsstrategien eingesetzt. Hervorzuheben sind hier auf Balanced-Steady-State-Free-Precession- und Turbo-Spin-Echo-Sequenzen (bSSFP und TSE) basierende MR-Verfahren, die zum Teil mit Arterial Spin Labeling (ASL) Methoden kombiniert werden. Im Rahmen dieser Übersichtsarbeit sollen die Prinzipien der unterschiedlichen Untersuchungstechniken sowie ihr klinischer Stellenwert dargestellt werden. Zudem werden auch sich noch im Entwicklungsstadium befindliche Non-KM-MRA Techniken vorgestellt.
Abstract
Especially in regard to the potential risks for the development of nephrogenic systemic fibrosis (NSF) following the administration of Gadolinium-based contrast material, nonenhanced MR angiography (MRA) methods are becoming ever more important. Besides well-established time-of-flight (TOF) and phase-contrast (PC) MRA, alternative imaging techniques based on balanced steady-state free precession (bSSFP) and turbo-spin-echo (TSE) sequences are increasingly used in combination with or without arterial spin labeling (ASL) strategies. This article provides an overview of the principles and clinical values of different nonenhanced MRA techniques. In addition, recent nonenhanced MRA developments are presented.
Key words
MR angiography - technical aspects - arteries
Literatur
- 1
Wedeen V J, Meuli R A, Edelman R R et al.
Projective imaging of pulsatile flow with magnetic resonance.
Science.
1985;
230
946-948
MissingFormLabel
- 2
Dumoulin C L, Cline H E, Souza S P et al.
Three-dimensional time-of-flight magnetic resonance angiography using spin saturation.
Magn Reson Med.
1989;
11
35-46
MissingFormLabel
- 3
Dumoulin C L, Hart H R.
Magnetic resonance angiography.
Radiology.
1986;
161
717-720
MissingFormLabel
- 4
Edelman R R.
MR angiography: present and future.
Am J Roentgenol.
1993;
161
1-11
MissingFormLabel
- 5
Keller P J, Drayer B P, Fram E K et al.
MR angiography with two-dimensional acquisition and three-dimensional display. Work
in progress.
Radiology.
1989;
173
527-532
MissingFormLabel
- 6
Prince M R, Yucel E K, Kaufman J A et al.
Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography.
J Magn Reson Imaging.
1993;
3
877-881
MissingFormLabel
- 7
Prince M R, Arnoldus Jr C, Frisoli J K.
Nephrotoxicity of high-dose gadolinium compared with iodinated contrast.
J Magn Reson Imaging.
1996;
6
162-166
MissingFormLabel
- 8
Rofsky N M, Weinreb J C, Bosniak M A et al.
Renal lesion characterization with gadolinium-enhanced MR imaging: efficacy and safety
in patients with renal insufficiency.
Radiology.
1991;
180
85-89
MissingFormLabel
- 9
Cowper S E, Robin H S, Steinberg S M et al.
Scleromyxoedema-like cutaneous diseases in renal-dialysis patients.
Lancet.
2000;
356
1000-1001
MissingFormLabel
- 10
Grobner T.
Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy
and nephrogenic systemic fibrosis?.
Nephrol Dial Transplant.
2006;
21
1104-1108
MissingFormLabel
- 11
Clorius S, Technau K, Watter T et al.
Nephrogenic systemic fibrosis following exposure to gadolinium-containing contrast
agent.
Clin Nephrol.
2007;
68
249-252
MissingFormLabel
- 12
Collidge T A, Thomson P C, Mark P B et al.
Gadolinium-enhanced MR imaging and nephrogenic systemic fibrosis: retrospective study
of a renal replacement therapy cohort.
Radiology.
2007;
245
168-175
MissingFormLabel
- 13
Heinrich M, Uder M.
[Nephrogenic systemic fibrosis after application of gadolinium-based contrast agents
– a status paper].
Fortschr Röntgenstr.
2007;
179
613-617
MissingFormLabel
- 14
Marckmann P, Skov L, Rossen K et al.
Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced
magnetic resonance imaging.
J Am Soc Nephrol.
2006;
17
2359-2362
MissingFormLabel
- 15
Prince M R, Zhang H, Morris M et al.
Incidence of nephrogenic systemic fibrosis at two large medical centers.
Radiology.
2008;
248
807-816
MissingFormLabel
- 16
Rydahl C, Thomsen H S, Marckmann P.
High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients
exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent.
Invest Radiol.
2008;
43
141-144
MissingFormLabel
- 17
Prince M R, Zhang H L, Prowda J C et al.
Nephrogenic systemic fibrosis and its impact on abdominal imaging.
Radiographics.
2009;
29
1565-1574
MissingFormLabel
- 18
Miyazaki M, Lee V S.
Nonenhanced MR angiography.
Radiology.
2008;
248
20-43
MissingFormLabel
- 19
Haase A, Frahm J, Matthaei D et al.
Flash Imaging – Rapid Nmr Imaging Using Low Flip-Angle Pulses.
J Magn Reson.
1986;
67
258-266
MissingFormLabel
- 20
Atkinson D, Brantzawadzki M, Gillan G et al.
Improved Mr-Angiography – Magnetization-Transfer Suppression with Variable Flip Angle
Excitation and Increased Resolution.
Radiology.
1994;
190
890-894
MissingFormLabel
- 21
Gullberg G T, Wehrli F W, Shimakawa A et al.
MR vascular imaging with a fast gradient refocusing pulse sequence and reformatted
images from transaxial sections.
Radiology.
1987;
165
241-246
MissingFormLabel
- 22
Lewin J S, Laub G, Hausmann R.
Three-dimensional time-of-flight MR angiography: applications in the abdomen and thorax.
Radiology.
1991;
179
261-264
MissingFormLabel
- 23
Ruggieri P M, Laub G A, Masaryk T J et al.
Intracranial circulation: pulse-sequence considerations in three-dimensional (volume)
MR angiography.
Radiology.
1989;
171
785-791
MissingFormLabel
- 24
Blatter D D, Parker D L, Robison R O.
Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative
analysis of vessel visibility.
Radiology.
1991;
179
805-811
MissingFormLabel
- 25
Bosmans H, Marchal G, Lukito G et al.
Time-of-Flight Mr-Angiography of the Brain – Comparison of Acquisition Techniques
in Healthy-Volunteers.
Am J Roentgenol.
1995;
164
161-167
MissingFormLabel
- 26
Choi C G, Lee D H, Lee J H et al.
Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight
magnetic resonance angiography with sensitivity encoding at 3 T.
Am J Neuroradiol.
2007;
28
439-446
MissingFormLabel
- 27
Willinek W A, Born M, Simon B et al.
Time-of-flight MR angiography: Comparison of 3.0-T imaging and 1.5-T imaging – Initial
experience.
Radiology.
2003;
229
913-920
MissingFormLabel
- 28
Yamada N, Hayashi K, Murao K et al.
Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive
to residual flow than is digital subtraction angiography.
Am J Neuroradiol.
2004;
25
1154-1157
MissingFormLabel
- 29
Anzalone N, Scomazzoni F, Cirillo M et al.
Follow-up of coiled cerebral aneurysms at 3 T: comparison of 3D time-of-flight MR
angiography and contrast-enhanced MR angiography.
Am J Neuroradiol.
2008;
29
1530-1536
MissingFormLabel
- 30
Schaafsma J D, Koffijberg H, Buskens E et al.
Cost-effectiveness of magnetic resonance angiography versus intra-arterial digital
subtraction angiography to follow-up patients with coiled intracranial aneurysms.
Stroke.
2010;
41
1736-1742
MissingFormLabel
- 31
Schaafsma J D, Velthuis B K, Majoie C B et al.
Intracranial aneurysms treated with coil placement: test characteristics of follow-up
MR angiography – multicenter study.
Radiology.
2010;
256
209-218
MissingFormLabel
- 32
Babiarz L S, Romero J M, Murphy E K et al.
Contrast-enhanced MR angiography is not more accurate than unenhanced 2D time-of-flight
MR angiography for determining > or = 70 % internal carotid artery stenosis.
Am J Neuroradiol.
2009;
30
761-768
MissingFormLabel
- 33
Carpenter J P, Baum R A, Holland G A et al.
Peripheral vascular surgery with magnetic resonance angiography as the sole preoperative
imaging modality.
J Vasc Surg.
1994;
20
861-869
MissingFormLabel
- 34
McCauley T R, Monib A, Dickey K W et al.
Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight
MR angiography.
Radiology.
1994;
192
351-357
MissingFormLabel
- 35
Firmin D N, Nayler G L, Kilner P J et al.
The application of phase shifts in NMR for flow measurement.
Magn Reson Med.
1990;
14
230-241
MissingFormLabel
- 36
Pelc N J, Bernstein M A, Shimakawa A et al.
Encoding strategies for three-direction phase-contrast MR imaging of flow.
J Magn Reson Imaging.
1991;
1
405-413
MissingFormLabel
- 37
Fera F, Bono F, Messina D et al.
Comparison of different MR venography techniques for detecting transverse sinus stenosis
in idiopathic intracranial hypertension.
J Neurol.
2005;
252
1021-1025
MissingFormLabel
- 38
Liauw L, Buchem M A, Spilt van A et al.
MR angiography of the intracranial venous system.
Radiology.
2000;
214
678-682
MissingFormLabel
- 39
Steffens J C, Link J, Schwarzenberg H et al.
Lower extremity occlusive disease: diagnostic imaging with a combination of cardiac-gated
2D phase-contrast and cardiac-gated 2D time-of-flight MRA.
J Comput Assist Tomogr.
1999;
23
7-12
MissingFormLabel
- 40
Bisschops R H, Klijn C J, Kappelle L J et al.
Collateral flow and ischemic brain lesions in patients with unilateral carotid artery
occlusion.
Neurology.
2003;
60
1435-1441
MissingFormLabel
- 41
Debatin J F, Ting R H, Wegmuller H et al.
Renal artery blood flow: quantitation with phase-contrast MR imaging with and without
breath holding.
Radiology.
1994;
190
371-378
MissingFormLabel
- 42
Mohajer K, Zhang H, Gurell D et al.
Superficial femoral artery occlusive disease severity correlates with MR cine phase-contrast
flow measurements.
J Magn Reson Imaging.
2006;
23
355-360
MissingFormLabel
- 43
Schoenberg S O, Knopp M V, Bock M et al.
Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR
blood flow measurements.
Radiology.
1997;
203
45-53
MissingFormLabel
- 44
Schoenberg S O, Knopp M V, Londy F et al.
Morphologic and functional magnetic resonance imaging of renal artery stenosis: a
multireader tricenter study.
J Am Soc Nephrol.
2002;
13
158-169
MissingFormLabel
- 45
Vanninen R, Koivisto K, Tulla H et al.
Hemodynamic effects of carotid endarterectomy by magnetic resonance flow quantification.
Stroke.
1995;
26
84-89
MissingFormLabel
- 46
Devos D G, Kilner P J.
Calculations of cardiovascular shunts and regurgitation using magnetic resonance ventricular
volume and aortic and pulmonary flow measurements.
Eur Radiol.
2010;
20
410-421
MissingFormLabel
- 47
Gatehouse P D, Keegan J, Crowe L A et al.
Applications of phase-contrast flow and velocity imaging in cardiovascular MRI.
Eur Radiol.
2005;
15
2172-2184
MissingFormLabel
- 48
Goffinet C, Kersten V, Pouleur A C et al.
Comprehensive assessment of the severity and mechanism of aortic regurgitation using
multidetector CT and MR.
Eur Radiol.
2010;
20
326-336
MissingFormLabel
- 49
Kon M W, Myerson S G, Moat N E et al.
Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic
resonance: comparison of techniques.
J Heart Valve Dis.
2004;
13
600-607
MissingFormLabel
- 50
Powell A J, Tsai-Goodman B, Prakash A et al.
Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry
for quantification of atrial shunts.
Am J Cardiol.
2003;
91
1523-1525, A 1529
MissingFormLabel
- 51
Rominger M B, Kluge A, Dinkel H P et al.
[Comparison between biventricular cine MRI and MR flow quantification in ascending
aorta and pulmonary outflow tract for the assessment of intracardial shunt volumes].
Fortschr Röntgenstr.
2002;
174
1380-1386
MissingFormLabel
- 52
Varaprasathan G A, Araoz P A, Higgins C B et al.
Quantification of flow dynamics in congenital heart disease: applications of velocity-encoded
cine MR imaging.
Radiographics.
2002;
22
895-905, discussion 905 – 896
MissingFormLabel
- 53
Carr H J.
Steady-state free precession in nuclear magnetic resonance.
Phys Rev.
1958;
112
1693-1701
MissingFormLabel
- 54
Scheffler K, Lehnhardt S.
Principles and applications of balanced SSFP techniques.
Eur Radiol.
2003;
13
2409-2418
MissingFormLabel
- 55
Katoh M, Buecker A, Stuber M et al.
Free-breathing renal MR angiography with steady-state free-precession (SSFP) and slab-selective
spin inversion: initial results.
Kidney Int.
2004;
66
1272-1278
MissingFormLabel
- 56
Katoh M, Spuentrup E, Stuber M et al.
Free-breathing renal magnetic resonance angiography with steady-state free-precession
and slab-selective spin inversion combined with radial k-space sampling and water-selective
excitation.
Magnet Reson Med.
2005;
53
1228-1233
MissingFormLabel
- 57
Lanzman R S, Kropil P, Schmitt P et al.
Nonenhanced free-breathing ECG-gated steady-state free precession 3D MR angiography
of the renal arteries: comparison between 1.5T and 3T.
Am J Roentgenol.
2010;
194
794-798
MissingFormLabel
- 58
Glockner J F, Takahashi N, Kawashima A et al.
Non-contrast renal artery MRA using an inflow inversion recovery steady state free
precession technique (Inhance): comparison with 3D contrast-enhanced MRA.
J Magn Reson Imaging.
2010;
31
1411-1418
MissingFormLabel
- 59
Coenegrachts K L, Hoogeveen R M, Vaninbroukx J A et al.
High-spatial-resolution 3D balanced turbo field-echo technique for MR angiography
of the renal arteries: initial experience.
Radiology.
2004;
231
237-242
MissingFormLabel
- 60
Herborn C U, Watkins D M, Runge V M et al.
Renal arteries: comparison of steady-state free precession MR angiography and contrast-enhanced
MR angiography.
Radiology.
2006;
239
263-268
MissingFormLabel
- 61
Wyttenbach R, Braghetti A, Wyss M et al.
Renal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced
MR angiography.
Radiology.
2007;
245
186-195
MissingFormLabel
- 62
Maki J H, Wilson G J, Eubank W B et al.
Steady-state free precession MRA of the renal arteries: breath-hold and navigator-gated
techniques vs. CE-MRA.
J Magn Reson Imaging.
2007;
26
966-973
MissingFormLabel
- 63
Maki J H, Wilson G J, Eubank W B et al.
Navigator-gated MR angiography of the renal arteries: a potential screening tool for
renal artery stenosis.
Am J Roentgenol.
2007;
188
W540-W546
MissingFormLabel
- 64
Lanzman R S, Voiculescu A, Walther C et al.
ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment
of transplant renal arteries: comparison with DSA.
Radiology.
2009;
252
914-921
MissingFormLabel
- 65
Liu X, Berg N, Sheehan J et al.
Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state
free precession.
Radiology.
2009;
251
535-542
MissingFormLabel
- 66
Krishnam M S, Tomasian A, Deshpande V et al.
Noncontrast 3D steady-state free-precession magnetic resonance angiography of the
whole chest using nonselective radiofrequency excitation over a large field of view:
comparison with single-phase 3D contrast-enhanced magnetic resonance angiography.
Invest Radiol.
2008;
43
411-420
MissingFormLabel
- 67
Krishnam M S, Tomasian A, Malik S et al.
Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with
conventional contrast-enhanced MR angiography for the assessment of thoracic aortic
diseases.
Eur Radiol.
2010;
20
1311-1320
MissingFormLabel
- 68
Amano Y, Takahama K, Kumita S.
Noncontrast-Enhanced Three-Dimensional Magnetic Resonance Aortography of the Thorax
at 3.0T Using Respiratory-Compensated T 1-Weighted k-Space Segmented Gradient-Echo
Imaging With Radial Data Sampling Preliminary Study.
Investigative Radiology.
2009;
44
548-552
MissingFormLabel
- 69
Groth M, Henes F O, Bannas P et al.
Intraindividual Comparison of Contrast-Enhanced MRI and Unenhanced SSFP Sequences
of Stenotic and Non-stenotic Pulmonary Artery Diameters.
Fortschr Röntgenstr.
2011;
183
47-53
MissingFormLabel
- 70
Hui B K, Noga M L, Gan K D et al.
Navigator-gated three-dimensional MR angiography of the pulmonary arteries using steady-state
free precession.
J Magn Reson Imaging.
2005;
21
831-835
MissingFormLabel
- 71
Nguyen T D, Spincemaille P, Cham M D et al.
Free-breathing 3D steady-state free precession coronary magnetic resonance angiography:
comparison of diaphragm and cardiac fat navigators.
J Magn Reson Imaging.
2008;
28
509-514
MissingFormLabel
- 72
Pereles F S, McCarthy R M, Baskaran V et al.
Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR
angiography in less than 4 minutes.
Radiology.
2002;
223
270-274
MissingFormLabel
- 73
Spuentrup E, Katoh M, Buecker A et al.
Free-breathing 3D steady-state free precession coronary MR angiography with radial
k-space sampling: comparison with cartesian k-space sampling and cartesian gradient-echo
coronary MR angiography – pilot study.
Radiology.
2004;
231
581-586
MissingFormLabel
- 74
Tengg-Kobligk von H, Ley-Zaporozhan J, Henninger V et al.
Intraindividual assessment of the thoracic aorta using contrast and non-contrast-enhanced
MR angiography.
Fortschr Röntgenstr.
2009;
181
230-236
MissingFormLabel
- 75
Katoh M, Spuntrup E, Kuehl H et al.
Flow-targeted inversion-prepared b-TFE coronary MR angiography: initial results in
patients.
Fortschr Röntgenstr.
2009;
181
1050-1055
MissingFormLabel
- 76
Sakuma H, Ichikawa Y, Suzawa N et al.
Assessment of coronary arteries with total study time of less than 30 minutes by using
whole-heart coronary MR angiography.
Radiology.
2005;
237
316-321
MissingFormLabel
- 77
Miyazaki M, Takai H, Sugiura S et al.
Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient
pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo
imaging.
Radiology.
2003;
227
890-896
MissingFormLabel
- 78
Lanzman R S, Blondin D, Schmitt P et al.
Non-Enhanced 3D MR Angiography of the Lower Extremity using ECG-Gated TSE Imaging
with Non-Selective Refocusing Pulses – Initial Experience.
Fortschr Röntgenstr.
2010;
182
861-867
MissingFormLabel
- 79
Lim R P, Hecht E M, Xu J et al.
3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary
clinical experience.
J Magn Reson Imaging.
2008;
28
181-189
MissingFormLabel
- 80
Miyazaki M, Sugiura S, Tateishi F et al.
Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin
echo.
J Magn Reson Imaging.
2000;
12
776-783
MissingFormLabel
- 81
Mohrs O K, Petersen S E, Heidt M C et al.
High-resolution 3D non-contrast-enhanced, ECG-gated, multi-step MR angiography of
the lower extremities: Comparison with contrast-enhanced MR angiography.
Eur Radiol.
2011;
21
434-442
MissingFormLabel
- 82 Xu J WP, Weale P, Gerhard L. et al .A novel non-contrast MR angiography technique using triggered non-selective refocused
SPACE for improved spatial resolution and speed (abstr). In: Proceedings of the Sixteenth Meeting of the International Society for Magnetic Resonance
in Medicine Berkeley. Calif: International society for Magnetic Resonance in Medicine; 2008. 730
MissingFormLabel
- 83 Atanasova I P, Storey P, Lim R P. et al .Effect of flip angle evolution on flow sensitivities in ECG-gated fast spin echo MRA
methods at 3 T (abstr). In: Proceedings of the Seventeenth Meeting of the International Society for Magnetic Resonance
in Medicine Berkeley. Calif: International society for Magnetic Resonance in Medicine; 2009. 422
MissingFormLabel
- 84
Hadizadeh D R, Falkenhausen von M, Gieseke J et al.
Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution
four-dimensional MR angiography compared with that at DSA.
Radiology.
2008;
246
205-213
MissingFormLabel
- 85
Lim R P, Shapiro M, Wang E Y et al.
3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging
with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA
and 3D time-of-flight MRA.
Am J Neuroradiol.
2008;
29
1847-1854
MissingFormLabel
- 86
Willinek W A, Hadizadeh D R, Falkenhausen von M et al.
4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated
MRA using a combination of CENTRA, keyhole, and SENSE at 3.0 T.
J Magn Reson Imaging.
2008;
27
1455-1460
MissingFormLabel
- 87
Bi X, Weale P, Schmitt P et al.
Non-contrast-enhanced four-dimensional (4D) intracranial MR angiography: a feasibility
study.
Magn Reson Med.
2010;
63
835-841
MissingFormLabel
- 88
Hori M, Shiraga N, Watanabe Y et al.
Time-Resolved Three-Dimensional Magnetic Resonance Digital Subtraction Angiography
Without Contrast Material in the Brain: Initial Investigation.
Journal of Magnetic Resonance Imaging.
2009;
30
214-218
MissingFormLabel
- 89
Yan L, Wang S, Zhuo Y et al.
Unenhanced dynamic MR angiography: high spatial and temporal resolution by using true
FISP-based spin tagging with alternating radiofrequency.
Radiology.
2010;
256
270-279
MissingFormLabel
- 90
Kim S G.
Quantification of relative cerebral blood flow change by flow-sensitive alternating
inversion recovery (FAIR) technique: application to functional mapping.
Magn Reson Med.
1995;
34
293-301
MissingFormLabel
- 91
Edelman R R, Sheehan J J, Dunkle E et al.
Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral
vascular disease: Technical considerations and clinical feasibility.
Magn Reson Med.
2010;
63
951-958
MissingFormLabel
Dr. Rotem S. Lanzman
Institut für Diagnostische und Interventionelle Radiologie
Uniklinik Düsseldorf
Düsseldorf
40225 Düsseldorf
Telefon: ++ 49/2 11/8 11 77 54
Fax: ++ 49/2 11/8 11 69 28
eMail: rotemshlomo@yahoo.de