Eur J Pediatr Surg 2010; 20(3): 158-163
DOI: 10.1055/s-0030-1249700
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Preconceptional Oral Vaccination Prevents Experimental Biliary Atresia in Newborn Mice

C. Turowski1 , J. Leonhardt2 , B. Teichmann1 , A. Heim3 , U. Baumann4 , J. F. Kuebler1 , C. Petersen5
  • 1Hannover Medical School, Pediatric Surgery, Hannover, Germany
  • 2St. Bernward Hospital, Pediatric Surgery, Hildesheim, Germany
  • 3Hannover Medical School, Virology, Hannover, Germany
  • 4Hannover Medical School, Pediatric Pulmonology and Neonatology, Hannover, Germany
  • 5Medical School Hannover, Department of Pediatric Surgery, Hannover, Germany
Further Information

Publication History

received January 16, 2010

accepted after revision February 21, 2010

Publication Date:
12 April 2010 (online)

Abstract

Introduction: Biliary atresia (BA) in humans resembles BA induced in Balb/c-mice by Rhesus Rotavirus (RRV). In mice, susceptibility to BA is ascribed to the lack of maternally derived immune protection. This study investigated whether vaccination of dams against RRV protected their offspring from developing BA.

Materials and Methods: Before mating, female mice were vaccinated orally with RotaTeq® or Rotarix®. Pups (n=243) from both test groups and a control group were intraperitoneally infected with RRV. Sacrifice of the animals was scheduled for days 7, 14 and 21 after infection. Then, gross and mircoscopia findings of the liver and the hepatoduodenal ligament gave evidence of BA, and hepatic viral load was tested by virus-specific real-time PCR, as well as plaque forming units.

Results: Two weeks after infection, the incidence of cholestasis was 100% in controls, 77% in pups of RotaTeq®-vaccinated dams, and 56% in pups of Rotarix®-vaccinated dams. However, in contrast to controls (incidence of BA: 82%) most pups in the test groups recovered (incidence of BA in pups of RotaTeq®-vaccinated dams 11%; incidence of BA in pups of Rotarix®-vaccinated dams 3%). Hepatic viral load was identical at various time-points in all pups, suggesting that differences in RRV clearance did not underlie this effect.

Conclusion: In this mouse model, oral vaccination with RotaTeq® and Rotarix® prevented most RRV-induced BA. This provides a new approach to a better understanding of both the pathomechanism of BA development and the capabilities of the innate immune system. It also suggests a first approach for prophylaxis against BA.

References

  • 1 Balistreri WF, Grand R, Hoofnagle JH. et al . Biliary atresia: current concepts and research directions.  Summary of a symposium. Hepatology. 1996;  23 1682-1692
  • 2 Sokol RJ, Mack C, Narkewicz MR. et al . Pathogenesis and outcome of biliary atresia: current concepts.  J Pediatr Gastroenterol Nutr. 2003;  37 4-21
  • 3 Petersen C. Pathogenesis and treatment opportunities for biliary atresia.  Clin Liver Dis. 2006;  10 73-88 , vi [Review]
  • 4 Perlmutter DH, Shepherd RW. Extrahepatic biliary atresia: a disease or a phenotype?.  Hepatology. 2002;  35 1297-1304
  • 5 Petersen C, Kuske M, Bruns E. et al . Progress in developing animal models for biliary atresia.  Eur J Pediatr Surg. 1998;  8 137-141
  • 6 Crawford SE, Patel DG, Cheng E. et al . Rotavirus viremia and extraintestinal viral infection in the neonatal rat model.  J Virol. 2006;  80 4820-4832
  • 7 Petersen C, Biermanns D, Kuske M. et al . New aspects in a murine model for extrahepatic biliary atresia.  J Pediatr Surg. 1997;  32 1190-1195
  • 8 Czech-Schmidt G, Verhagen W, Szavay P. et al . Immunological gap in the infectious animal model for biliary atresia.  J Surg Res. 2001;  1011 62-67
  • 9 Bezerra JA. The next challenge in pediatric cholestasis: deciphering the pathogenesis of biliary atresia.  J Pediatr Gastroenterol Nutr. 2006;  1 S23-29
  • 10 Landing BH. Considerations of the pathogenesis of neonatal hepatitis, biliary atresia and choledochal cyst-the concept of infantile obstructive cholangiopathy.  Prog Pediatr Surg. 1974;  6 113-139
  • 11 Mack CL. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease.  Semin Liver Dis. 2007;  27 233-242
  • 12 Kuebler JF, Czech-Schmidt G, Leonhardt J. et al . Type-I but not type-II interferon receptor knockout mice are susceptible to biliary atresia.  Pediatr Res. 2006;  59 790-794
  • 13 Vesikari T, Matson DO, Dennehy P. et al . Rotavirus Efficacy and Safety Trial (REST) Study. Team Safety and efficacy of a pentavalent human-bovine (WC3) reassortant rotavirus vaccine.  N Engl J Med. 2006;  354 23-33
  • 14 Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR. et al . Human Rotavirus Vaccine Study Group. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis.  N Engl J Med. 2006;  354 11-22
  • 15 Glass RI, Parashar UD. The promise of new rotavirus vaccines.  N Engl J Med. 2006;  354 75-77
  • 16 Riepenhoff-Talty M, Schaekel K, Clark HF. et al . Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice.  Pediatr Res. 1993;  33 394-399
  • 17 Mack CL, Tucker RM, Lu BR. et al . Cellular and humoral autoimmunity directed at bile duct epithelia in murine biliary atresia.  Hepatology. 2006;  44 1231-1239
  • 18 Bezerra JA, Tiao G, Ryckman FC. et al . Genetic induction of proinflammatory immunity in children with biliary atresia.  Lancet. 2002;  360 1653-1659
  • 19 Shivakumar P, Campbell KM, Sabla GE. et al . Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia.  J Clin Invest. 2004;  114 322-329
  • 20 Petersen C, Bruns E, Kuske M. et al . Treatment of extrahepatic biliary atresia with interferon-alpha in a murine infectious model.  Pediatr Res. 1997;  42 623-628
  • 21 Leonhardt J, Stanulla M, von Wasielewski R. et al . Gene expression profile of the infective murine model for biliary atresia.  Pediatr Surg Int. 2006;  22 84-89
  • 22 Mohanty SK, Shivakumar P, Sabla G. et al . Loss of interleukin-12 modifies the pro-inflammatory response but does not prevent duct obstruction in experimental biliary atresia.  BMC Gastroenterol. 2006;  6 14
  • 23 Carvalho E, Liu C, Shivakumar P. et al . Analysis of the biliary transcriptome in experimental biliary atresia.  Gastroenterology. 2005;  129 713-717
  • 24 Mack CL, Tucker RM, Sokol RJ. et al . Armed CD4+ Th1 effector cells and macrophages participate in bile duct injury in murine biliary atresia.  Clin Immunol. 2005;  115 200-209
  • 25 Mack CL, Tucker RM, Sokol RJ. et al . Biliary atresia is associated with CD4+ Th1 cell-mediated portal-tract inflammation.  Pediatr Res. 2004;  56 9-10
  • 26 Mack CL, Falta MT, Sullivan AK. et al . Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia.  Gastroenterology. 2007;  133 278-287
  • 27 Oldstone MB. Molecular and cellular mechanisms, pathogenesis, and treatment of insulin-dependent diabetes obtained through study of transgenic model of molecular mimicry.  Curr Top Microbiol Immunol. 2005;  296 65-87
  • 28 Bondoc AJ, Jafri MA, Donnelly B. et al . Prevention of the murine model of biliary atresia after live rotavirus vaccination of dams.  J Pediatr Surg. 2009;  44 1479-1490
  • 29 Martin D, Rioux S, Gagnon E. et al . Protection from group B streptococcal infection in neonatal mice by maternal immunization with recombinant sip protein.  Infect Immun. 2002;  70 4897-4901
  • 30 Ward RL. Rotavirus vaccines: how they work or don't work.  Expert Rev Mol Med. 2008;  12 10: e5
  • 31 Ward RL. Possible mechanisms of protection elicited by candidate rotavirus vaccines as determined with the adult mouse model.  Viral Immunol. 2003;  16 17-24
  • 32 Shivakumar P, Sabla G, Mohanty S. et al . Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia.  Gastroenterology.. 2007;  133 268-277

Correspondence

Dr. Carmen TurowskiMD 

Hannover Medical School

Pediatric Surgery

Carl-Neuberg-Straße 1

30625 Hannover

Germany

Phone: +49 511 532 9260

Fax: +49 511 532 9059

Email: turowski.carmen@mh-hannover.de