Abstract
Since cellular senescence involves organismal aging as well as diverse diseases, aging intervention might contribute to inhibit the aging process as well as aging-associated diseases. We tried to search for effective compounds from the root bark of Ulmus davidiana that are able to inhibit cellular senescence in human fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs). Twenty-two compounds from the root bark of U. davidiana were isolated and screened for their inhibitory effects on adriamycin-induced cellular senescence by measuring senescence-associated β -galatosidase (SA-β -gal) activity. Among twenty-two compounds isolated, epifriedelanol (3 ), ssioriside (15 ), and catechin-7-O-β -D-glucopyranoside (22 ) had inhibitory effects on adriamycin-induced cellular senescence in HDFs. Friedelin (2 ), epifriedelanol (3 ), and catechin-7-O-β -apiofuranoside (18 ) were active in HUVECs. In particular, epifriedelanol (3 ) suppressed adriamycin-induced cellular senescence as well as replicative senescence in HDFs and HUVECs. These results suggest that epifriedelanol (3 ) reduces cellular senescence in human primary cells and might be used to develop dietary supplements or cosmetics that modulate tissue aging or aging-associated diseases.
Key words
Ulmus davidiana var. japonica
- Ulmaceae - cellular senescence - epifriedelanol - human primary cells - aging intervention
References
1
Hayflick L, Moorhead P S.
The serial cultivation of human diploid cell strains.
Exp Cell Res.
1961;
25
585-621
2
Collado M, Blasco M A, Serrano M.
Cellular senescence in cancer and aging.
Cell.
2007;
130
223-233
3
Patil C K, Mian I S, Campisi J.
The thorny path linking cellular senescence to organismal aging.
Mech Ageing Dev.
2005;
126
1040-1045
4
Campisi J.
Cellular senescence as a tumor-suppressor mechanism.
Trends Cell Biol.
2001;
11
S27-S31
5
Dimri G P, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano E E, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J.
A biomarker that identifies senescent human cells in culture and in aging skin in vivo .
Proc Natl Acad Sci USA.
1995;
92
9363-9367
6
Paradis V, Youssef N, Dargere D, Bâ N, Bonvoust F, Deschatrette J, Bedossa P.
Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas.
Hum Pathol.
2001;
32
327-332
7
Makrantonaki E, Zouboulis C C.
Molecular mechanisms of skin aging: state of the art.
Ann NY Acad Sci.
2007;
1119
40-50
8
Yaar M, Gilchrest B A.
Photoageing: mechanism, prevention and therapy.
Br J Pharmacol.
2007;
157
874-887
9
Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I.
Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction.
Circulation.
2002;
105
1541-1544
10
Hayashi T, Matsui-Hirai H, Miyazaki-Akita A, Fukatsu A, Funami J, Ding Q F, Kamalanathan S, Hattori Y, Ignarro L J, Iguchi A.
Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes.
Proc Natl Acad Sci USA.
2006;
103
17018-17023
11
Price J S, Waters J G, Darrah C, Pennington C, Edwards D R, Donell S T, Clark I M.
The role of chondrocyte senescence in osteoarthritis.
Aging Cell.
2002;
1
57-65
12
Dai S M, Shan Z Z, Nakamura H, Masuko-Hongo K, Kato T, Nishioka K, Yudoh K.
Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis.
Arthritis Rheum.
2006;
54
818-831
13
Schmid M, Rodemann H P, Aicher W K.
Frequency of terminally differentiated fibroblasts in the synovial membrane of rheumatoid arthritis patients.
Z Rheumatol.
2004;
63
483-489
14
Mendez M V, Stanley A, Park H Y, Shon K, Phillips T, Menzoian J O.
Fibroblasts cultured from venous ulcers display cellular characteristics of senescence.
J Vasc Surg.
1998;
28
876-883
15
Harding K G, Moore K, Phillips T J.
Wound chronicity and fibroblast senescence–implications for treatment.
Int Wound J.
2005;
2
364-368
16
Wall I B, Moseley R, Baird D M, Kipling D, Giles P, Laffafian I, Price P E, Thomas D W, Stephens P.
Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers.
J Invest Dermatol.
2008;
128
2526-2540
17
Choi J, Shendrik I, Peacocke M, Peehl D, Buttyan R, Ikeguchi E F, Katz A E, Benson M C.
Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia.
Urology.
2000;
56
160-166
18
Campisi J.
Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors.
Cell.
2005;
120
513-522
19
Kim H J, Kim K S, Kim S H, Baek S H, Kim H Y, Lee C, Kim J R.
Induction of cellular senescence by secretory phospholipase A2 in human dermal fibroblasts through an ROS-mediated p 53 pathway.
J Gerontol A Biol Sci Med Sci.
2009;
64
351-362
20
Kim K S, Kang K W, Seu Y B, Baek S H, Kim J R.
Interferon-gamma induces cellular senescence through p 53-dependent DNA damage signaling in human endothelial cells.
Mech Ageing Dev.
2009;
130
179-188
21
Demidenko Z N, Blagosklonny M V.
At concentrations that inhibit mTOR, resveratrol suppresses cellular senescence.
Cell Cycle.
2009;
8
1901-1904
22
Xia L, Wang X X, Hu X S, Guo X G, Shang Y P, Chen H J, Zeng C L, Zhang F R, Chen J Z.
Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms.
Br J Pharmacol.
2008;
155
387-394
23
Kim Y H, Kim K S, Han C S, Yang H C, Park S H, Ko K I, Lee S H, Kim K H, Lee N H, Kim J M, Son K H.
Inhibitory effects of natural plants of Jeju Island on elastase and MMP-1 expression.
J Cosmet Sci.
2007;
58
19-33
24
Fujimura T, Tsukahara K, Moriwaki S, Hotta M, Kitahara T, Takema Y.
A horse chestnut extract, which induces contraction forces in fibroblasts, is a potent anti-aging ingredient.
Int J Cosmet Sci.
2007;
29
140
25
Leu S J, Lin Y P, Lin R D, Wen C L, Cheng K T, Hsu F L, Lee M H.
Phenolic constituents of Malus doumeri var. formosana in the field of skin care.
Biol Pharm Bull.
2006;
29
740-745
26
Lee S, Lim J M, Jin M H, Park H K, Lee E J, Kang S, Kim Y S, Cho W G.
Partially purified paeoniflorin exerts protective effects on UV-induced DNA damage and reduces facial wrinkles in human skin.
J Cosmet Sci.
2006;
57
57-64
27
Cho Y H, Kim J H, Sim G S, Lee B C, Pyo H B, Park H D.
Inhibitory effects of antioxidant constituents from Melothria heterophylla on matrix metalloproteinase-1 expression in UVA-irradiated human dermal fibroblasts.
J Cosmet Sci.
2006;
57
279-289
28
Son B W, Park J H, Zee O P.
Catechin glycoside from Ulmus davidiana .
Arch Pharm Res.
1989;
12
219-222
29
Moon Y H, Rim G R.
Studies on the constituents of Ulmus parvifolia .
Korean J Pharmacognosy.
1995;
26
1-7
30 Shin M K. Clinical traditional herbalogy. Seoul; Younglimsa 1997: 669-778
31
Lee E B, KIm O K, Jung C S, Jung K H.
The influence of methanol extract of Ulmus davidiana var. japonica cortex on gastric erosion and ulcer and paw edema in rats.
Korean J Pharmacol.
1995;
39
671-675
32
Hong N D, Rho Y S, Kim N J, Kim J S.
A study on efficacy of Ulmi cortex.
Korean J Pharmacognosy.
1990;
21
217-222
33
Yang Y M, Hyun J W, Lim K H, Sung M S, Kang S S, Paik H W, Bae W K, Cho H, Kim H J, Woo E R, Park H K, Park J G.
Antineoplastic effect of extracts from traditional medical plants and various plants (III).
Korean J Pharmacognosy.
1996;
27
105-110
34
Lee Y J, Han J P.
Antioxidative activities and nitrite scavenging abilities of extracts from Ulmus davidiana .
J Food Sci Nutr.
2000;
29
893-899
35
Bae Y S, Kim J K.
Extractives of the bark of ash and elm as medical hardwood tree species.
Mokjae Konhak.
2000;
28
62-69
36
Lee M K, Sung S H, Lee H S, Cho J H, Kim Y C.
Lignan and neolignan glycosides from Ulmus davidiana var. japonica .
Arch Pharm Res.
2001;
24
198-201
37
Kwon Y M, Lee J H, Lee M W.
Phenolic compounds from barks of Ulmus macrocarpa and its antioxidative activities.
Korean J Pharmacognosy.
2002;
33
404-410
38
Song Y S, Lee B Y, Hwang E S.
Dinstinct ROS and biochemical profiles in cells undergoing DNA damage-induced senescence and apoptosis.
Mech Ageing Dev.
2005;
126
580-590
39
Demidenko Z N, Blagosklonny M V.
Growth stimulation leads to cellular senescence when the cell cycle is blocked.
Cell Cycle.
2008;
7
3355-3361
40
Wang D, Xia M, Cui Z.
New triterpenoids isolated from the root bark of Ulmus pumila L.
Chem Pharm Bull.
2006;
54
775-778
41
Xie W D, Gao X, Jia Z J.
A new C-10 acetylene and a new triterpenoid from Conyza canadensis .
Arch Pharm Res.
2007;
30
547-551
42
Ali M S, Mahmud S, Perveen S, Ahmad V U, Rizwani G H.
Epimers from the leaves of Calophyllum inophyllum .
Phytochemistry.
1999;
50
1385-1389
43
Chang C W, Wu T S, Hsieh Y S, Kuo S C, Chao P D.
Terpenoids of Syzygium formosanum .
J Nat Prod.
1999;
62
327-328
44
Li S, Chen R Y, Yu D Q.
Study on chemical constituents of Myricaria paniculata I.
Zhonggno Zhong Yao Za Zhi.
2007;
32
403-406
45
Nawamaki K, Kuroyanagi M.
Sesquiterpenoids from Acorus calamus as germination inhibitors.
Phytochemistry.
1996;
43
1175-1182
46
Umlauf D, Zapp J, Becker H, Adam K P.
Biosynthesis of the irregular monoterpene artemisia ketone, the sesquiterpene germacrene D and other isoprenoids in Tanacetum vulgare L. (Asteraceae).
Phytochemistry.
2004;
65
2463-2470
47
Aguirre M C, Delporte C, Backhouse N, Erazo S, Letelier M E, Cassels B K, Silva X, Alegría S, Negrete R.
Topical anti-inflammatory activity of 2 alpha-hydroxy pentacyclic triterpene acids from the leaves of Ugni molinae .
Bioorg Med Chem.
2006;
14
5673-5677
48
Sang S, Kikuzaki H, Lapsley K, Rosen R T, Nakatani N, Ho C T.
Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch).
J Agric Food Chem.
2002;
50
4709-4712
49
Yoo S W, Kim J S, Kang S S, Son K H, Chang H W, Kim H P, Bae K, Lee C O.
Constituents of the fruits and leaves of Euodia daniellii .
Arch Pharm Res.
2002;
25
824-830
50
Seebacher W, Simic N, Weis R, Saf R, Kunert O.
Complete assignments of 1 H and 13 C NMR resonances of oleanolic acid, 18-oleanolic acid, ursolic acid and their 11-oxo derivatives.
Megn Reson Chem.
2003;
41
636-638
51
Hisashi K, Haruo O.
Configurational studies on hydroxy groups at C-2, 3 and 23 or 24 of oleanene and ursene-type triterpenes by NMR spectroscopy.
Phytochemistry.
1989;
28
1703-1710
52
Liu P, Duan H Q, Pan Q, Zhang Y W, Yao Z.
Triterpenes from herb of Potentilla chinesis .
Zhongguo Zhong Yao Za Zhi.
2006;
31
1875-1879
53
Lavaud C, Massiot G, Barrera J B, Moretti C, Le Men-Olivier L.
Triterpene saponins from Myrsine pellucida .
Phytochemistry.
1994;
37
1671-1677
54
Smite E, Pan H, Lundgren L N.
Lignan glycosides from inner bark of Betula pendula .
Phytochemistry.
1995;
40
341-343
55
Inoshiri S, Sasaki M, Kohda H, Otsuka H, Yamasaki K.
Aromatic glycosides from Berchemia racemosa .
Phytochemistry.
1987;
26
2811-2814
56
Yoshinari K, Sashida Y, Shimomura H.
Two new lignan xylosides from the barks of Prunus ssiori and Prunus padus .
Chem Pharm Bull.
1989;
37
3301-3303
57
Nahrstedt A, Proksch P, Conn E E.
Dhurrin, (−)-catechin, flavonol glycosides and flavones from Chamaebatia foliolosa .
Phytochemistry.
1987;
26
1546-1547
58
Na M K, An R B, Lee S M, Min B S, Kim Y H, Bae K H, Kang S S.
Antioxidant compounds from the stem bark of Sorbus commixta .
Nat Prod Sci.
2002;
8
26-29
59
Ishimaru K, Nonaka G-I, Nishioka I.
Flavan-3-ol and procyanidin glycosides from Quercus miyagii .
Phytochemistry.
1987;
26
1167-1170
60
Zhang C-Z, Xu X-Z, Li C.
Fructosides from Cynomorium songaricum .
Phytochemistry.
1996;
41
975-976
61
Pabst A, Barron D, Semon E, Schreier P.
Two diastereomeric 3-oxo-[alpha]-ionol [beta]–glucosides from raspberry fruit.
Phytochemistry.
1992;
31
1649-1652
62
De Marino S, Borbone N, Zollo F, Ianaro A, Di Meglio P, Iorizzi M.
Megastigmane and phenolic components from Laurus nobilis L. leaves and their inhibitory effects on nitric oxide production.
J Agric Food Chem.
2004;
52
7525-7531
63
Foo L Y, Karchesy J J.
Polyphenolic glycosides from Douglas fir inner bark.
Phytochemistry.
1989;
28
1237-1240
64
Yoon I K, Kim H K, Kim Y K, Song I H, Kim W, Kim S, Baek S H, Kim J H, Kim J R.
Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology.
Exp Gerontol.
2004;
39
1369-1378
65
Kim K S, Kim M S, Seu Y B, Chung H Y, Kim J H, Kim J R.
Regulation of replicative senescence by insulin-like growth factor-binding protein 3 in human umbilical vein endothelial cells.
Aging Cell.
2007;
6
535-545
66
Kundu J K, Rouf A S, Hossain M N, Hasan C M, Rashid M A.
Antitumor activity of epifriedelanol from Vitis trifolia .
Fitoterapia.
2000;
71
577-579
67
Kim D K, Lim J P, Kim J W, Park H W, Eun J S.
Antitumor and antiinflammatory constituents from Celtis sinensis .
Ach Pharm Res.
2005;
28
39-43
68
Van Kiem P, Van Minh C, Huong H T, Nam N H, Lee J J, Kim Y H.
Pentacyclic triterpenoids from Mallotus apelta .
Ach Pharm Res.
2004;
27
1109-1113
69
Kuilman T, Peeper D S.
Senescence-messaging secretome: SMS-ing cellular stress.
Nat Rev Cancer.
2009;
9
81-94
1 These authors contributed equally to this work.
Prof. Dr. Jae-Ryong Kim
Department of Biochemistry and Molecular Biology College of Medicine, Yeungnam University
317-1 Daemyung-Dong
Daegu 705-717
Republic of Korea
Phone: +82 5 36 20 43 42
Fax: +82 5 36 54 66 51
Email: kimjr@ynu.ac.kr