Semin Thromb Hemost 2010; 36(3): 352-361
DOI: 10.1055/s-0030-1253457
© Thieme Medical Publishers

Heterogeneity and Plasticity of Lymphatic Endothelial Cells

Sunju Lee1 , Inho Choi1 , Young-Kwon Hong1
  • 1Departments of Surgery, and of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
Further Information

Publication History

Publication Date:
20 May 2010 (online)

ABSTRACT

Endothelial cells are found in most organs and tissues in our body. Despite their apparent morphological and functional similarities, endothelial cells exhibit remarkable heterogeneity and plasticity. In a strict sense, no two endothelial cells are identical in terms of their biological, immunological, functional, metabolic, morphological, and anatomical aspects. Their heterogeneity and plasticity are now known to be dependent upon and conferred by their microenvironments, arteriovenous-lymphatic cell identity, organ-specific vascular beds, fluid dynamics, vessel sizes, anatomical locations, physiological and pathological states, and more. Although abundant evidence is available to demonstrate endothelial heterogeneity in the blood vascular system, studies of heterogeneity and plasticity of lymphatic endothelial cells are limited because of the short history of lymphatic research. Nonetheless, a growing body of exciting work has begun to discover that lymphatic endothelial cells are as heterogeneous as blood vascular endothelial cells. In this article, we discuss the heterogeneity and plasticity of lymphatic endothelial cells.

REFERENCES

  • 1 Asellius G. De lactibus sive lacteis venis. Milan, Italy; Mediolani 1627
  • 2 Harvey W. An Anatomical Study of the Motion of the Heart and Blood in Animals. 1628. 
  • 3 Hong Y K, Shin J W, Detmar M. Development of the lymphatic vascular system: a mystery unravels.  Dev Dyn. 2004;  231(3) 462-473
  • 4 Sabin F R. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig.  Am J Anat. 1902;  1 367-391
  • 5 Sabin F R. On the development of the superficial lymphatics in the skin of the pig.  Am J Anat. 1904;  3 183-195
  • 6 Huntington G S, McClure C FW. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica).  Am J Anat. 1910;  10 177-311
  • 7 Wigle J T, Harvey N, Detmar M et al.. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype.  EMBO J. 2002;  21(7) 1505-1513
  • 8 Wigle J T, Oliver G. Prox1 function is required for the development of the murine lymphatic system.  Cell. 1999;  98(6) 769-778
  • 9 Hong Y K, Lange-Asschenfeldt B, Velasco P et al.. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins.  FASEB J. 2004;  18(10) 1111-1113
  • 10 Oliver G, Detmar M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature.  Genes Dev. 2002;  16(7) 773-783
  • 11 Srinivasan R S, Dillard M E, Lagutin O V et al.. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature.  Genes Dev. 2007;  21(19) 2422-2432
  • 12 Wilting J, Schneider M, Papoutski M, Alitalo K, Christ B. An avian model for studies of embryonic lymphangiogenesis.  Lymphology. 2000;  33(3) 81-94
  • 13 Wilting J, Papoutsi M, Othman-Hassan K et al.. Development of the avian lymphatic system.  Microsc Res Tech. 2001;  55(2) 81-91
  • 14 Wilting J, Aref Y, Huang R et al.. Dual origin of avian lymphatics.  Dev Biol. 2006;  292(1) 165-173
  • 15 Oliver G, Sosa-Pineda B, Geisendorf S, Spana E P, Doe C Q, Gruss P. Prox 1, a prospero-related homeobox gene expressed during mouse development.  Mech Dev. 1993;  44(1) 3-16
  • 16 Kielman M F, Barradeau S, Smits R, Harteveld C L, Bernini L F. Characterization and localization of the mProx1 gene directly upstream of the mouse alpha-globin gene cluster: identification of a polymorphic direct repeat in the 5'UTR.  Mamm Genome. 1996;  7(12) 877-880
  • 17 Tomarev S I, Zinovieva R D, Chang B, Hawes N L. Characterization of the mouse Prox1 gene.  Biochem Biophys Res Commun. 1998;  248(3) 684-689
  • 18 Doe C Q, Chu-LaGraff Q, Wright D M, Scott M P. The prospero gene specifies cell fates in the Drosophila central nervous system.  Cell. 1991;  65(3) 451-464
  • 19 Hong Y K, Detmar M. Prox1, master regulator of the lymphatic vasculature phenotype.  Cell Tissue Res. 2003;  314(1) 85-92
  • 20 Demidenko Z, Badenhorst P, Jones T, Bi X, Mortin M A. Regulated nuclear export of the homeodomain transcription factor Prospero.  Development. 2001;  128(8) 1359-1367
  • 21 Hassan B, Li L, Bremer K A, Chang W, Pinsonneault J, Vaessin H. Prospero is a panneural transcription factor that modulates homeodomain protein activity.  Proc Natl Acad Sci U S A. 1997;  94(20) 10991-10996
  • 22 Shin J W, Min M, Larrieu-Lahargue F et al.. Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis.  Mol Biol Cell. 2006;  17(2) 576-584
  • 23 Hong Y K, Harvey N, Noh Y H et al.. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate.  Dev Dyn. 2002;  225(3) 351-357
  • 24 Petrova T V, Mäkinen T, Mäkelä T P et al.. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor.  EMBO J. 2002;  21(17) 4593-4599
  • 25 Song K H, Li T, Chiang J YA. A Prospero-related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene.  J Biol Chem. 2006;  281(15) 10081-10088
  • 26 Steffensen K R, Holter E, Båvner A et al.. Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZ-F1 homologue.  EMBO Rep. 2004;  5(6) 613-619
  • 27 Qin J, Gao D M, Jiang Q F et al.. Prospero-related homeobox (Prox1) is a corepressor of human liver receptor homolog-1 and suppresses the transcription of the cholesterol 7-alpha-hydroxylase gene.  Mol Endocrinol. 2004;  18(10) 2424-2439
  • 28 Liu Y W, Gao W, Teh H L, Tan J H, Chan W K. Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium.  Mol Cell Biol. 2003;  23(20) 7243-7255
  • 29 Lee S, Kang J, Yoo J et al.. Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate.  Blood. 2009;  113(8) 1856-1859
  • 30 Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction.  Genes Cells. 2009;  14(3) 425-434
  • 31 François M, Caprini A, Hosking B et al.. Sox18 induces development of the lymphatic vasculature in mice.  Nature. 2008;  456(7222) 643-647
  • 32 Hosking B, François M, Wilhelm D et al.. Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice.  Development. 2009;  136(14) 2385-2391
  • 33 Jeltsch M, Kaipainen A, Joukov V et al.. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice.  Science. 1997;  276(5317) 1423-1425
  • 34 Joukov V, Pajusola K, Kaipainen A et al.. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.  EMBO J. 1996;  15(2) 290-298
  • 35 Lee J, Gray A, Yuan J, Luoh S M, Avraham H, Wood W I. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4.  Proc Natl Acad Sci U S A. 1996;  93(5) 1988-1992
  • 36 Kaipainen A, Korhonen J, Mustonen T et al.. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.  Proc Natl Acad Sci U S A. 1995;  92(8) 3566-3570
  • 37 Karkkainen M J, Haiko P, Sainio K et al.. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins.  Nat Immunol. 2004;  5(1) 74-80
  • 38 Achen M G, Jeltsch M, Kukk E et al.. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).  Proc Natl Acad Sci U S A. 1998;  95(2) 548-553
  • 39 Veikkola T, Jussila L, Makinen T et al.. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice.  EMBO J. 2001;  20(6) 1223-1231
  • 40 Baldwin M E, Halford M M, Roufail S et al.. Vascular endothelial growth factor D is dispensable for development of the lymphatic system.  Mol Cell Biol. 2005;  25(6) 2441-2449
  • 41 Mäkinen T, Veikkola T, Mustjoki S et al.. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3.  EMBO J. 2001;  20(17) 4762-4773
  • 42 Dumont D J, Jussila L, Taipale J et al.. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3.  Science. 1998;  282(5390) 946-949
  • 43 Mäkinen T, Jussila L, Veikkola T et al.. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3.  Nat Med. 2001;  7(2) 199-205
  • 44 Hirakawa S, Hong Y K, Harvey N et al.. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells.  Am J Pathol. 2003;  162(2) 575-586
  • 45 Kriehuber E, Breiteneder-Geleff S, Groeger M et al.. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages.  J Exp Med. 2001;  194(6) 797-808
  • 46 Nagy J A, Vasile E, Feng D et al.. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations.  Cold Spring Harb Symp Quant Biol. 2002;  67 227-237
  • 47 Kunstfeld R, Hirakawa S, Hong Y K et al.. Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia.  Blood. 2004;  104(4) 1048-1057
  • 48 Jackson D G. The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1.  Trends Cardiovasc Med. 2003;  13(1) 1-7
  • 49 Jackson D G. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis.  APMIS. 2004;  112(7–8) 526-538
  • 50 Banerji S, Ni J, Wang S X et al.. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan.  J Cell Biol. 1999;  144(4) 789-801
  • 51 Gale N W, Prevo R, Espinosa J et al.. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1.  Mol Cell Biol. 2007;  27(2) 595-604
  • 52 Wetterwald A, Hoffstetter W, Cecchini M G et al.. Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes.  Bone. 1996;  18(2) 125-132
  • 53 Schacht V, Ramirez M I, Hong Y K et al.. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema.  EMBO J. 2003;  22(14) 3546-3556
  • 54 Ramirez M I, Millien G, Hinds A, Cao Y, Seldin D C, Williams M C. T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth.  Dev Biol. 2003;  256(1) 61-72
  • 55 Kato Y, Fujita N, Kunita A et al.. Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors.  J Biol Chem. 2003;  278(51) 51599-51605
  • 56 Zimmer G, Oeffner F, Von Messling V et al.. Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium.  Biochem J. 1999;  341(Pt 2) 277-284
  • 57 Nose K, Saito H, Kuroki T. Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells.  Cell Growth Differ. 1990;  1(11) 511-518
  • 58 Rishi A K, Joyce-Brady M, Fisher J et al.. Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives.  Dev Biol. 1995;  167(1) 294-306
  • 59 Tangemann K, Gunn M D, Giblin P, Rosen S D. A high endothelial cell-derived chemokine induces rapid, efficient, and subset-selective arrest of rolling T lymphocytes on a reconstituted endothelial substrate.  J Immunol. 1998;  161(11) 6330-6337
  • 60 Gunn M D, Tangemann K, Tam C, Cyster J G, Rosen S D, Williams L T. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes.  Proc Natl Acad Sci U S A. 1998;  95(1) 258-263
  • 61 Pereira F A, Qiu Y, Tsai M J, Tsai S Y. Chicken ovalbumin upstream promoter transcription factor (COUP-TF): expression during mouse embryogenesis.  J Steroid Biochem Mol Biol. 1995;  53 503-508
  • 62 Pereira F A, Qiu Y, Zhou G, Tsai M J, Tsai S Y. The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development.  Genes Dev. 1999;  13(8) 1037-1049
  • 63 Pereira F A, Tsai M J, Tsai S Y. COUP-TF orphan nuclear receptors in development and differentiation.  Cell Mol Life Sci. 2000;  57(10) 1388-1398
  • 64 You L R, Lin F J, Lee C T, DeMayo F J, Tsai M J, Tsai S Y. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity.  Nature. 2005;  435(7038) 98-104
  • 65 Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F. Endothelial cell heterogeneity and organ specificity.  J Hematother Stem Cell Res. 2002;  11(1) 81-90
  • 66 Børsum T, Hagen I, Henriksen T, Carlander B. Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture.  Atherosclerosis. 1982;  44(3) 367-378
  • 67 Milici A J, Furie M B, Carley W W. The formation of fenestrations and channels by capillary endothelium in vitro.  Proc Natl Acad Sci U S A. 1985;  82(18) 6181-6185
  • 68 Risau W. Induction of blood-brain barrier endothelial cell differentiation.  Ann N Y Acad Sci. 1991;  633 405-419
  • 69 Ager A. Isolation and culture of high endothelial cells from rat lymph nodes.  J Cell Sci. 1987;  87(Pt 1) 133-144
  • 70 Aird W C, Edelberg J M, Weiler-Guettler H, Simmons W W, Smith T W, Rosenberg R D. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment.  J Cell Biol. 1997;  138(5) 1117-1124
  • 71 Zhu D Z, Cheng C F, Pauli B U. Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule.  Proc Natl Acad Sci U S A. 1991;  88(21) 9568-9572
  • 72 Lacorre D A, Baekkevold E S, Garrido I et al.. Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment.  Blood. 2004;  103(11) 4164-4172
  • 73 Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper M S, Skobe M. Molecular characterization of lymphatic endothelial cells.  Proc Natl Acad Sci U S A. 2002;  99(25) 16069-16074
  • 74 Nisato R E, Harrison J A, Buser R et al.. Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span.  Am J Pathol. 2004;  165(1) 11-24
  • 75 Nisato R E, Buser R, Pepper M S. Lymphatic endothelial cells: establishment of primaries and characterization of established lines.  Methods Mol Biol. 2009;  467 113-126
  • 76 Wick N, Saharinen P, Saharinen J et al.. Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro.  Physiol Genomics. 2007;  28(2) 179-192
  • 77 Amatschek S, Kriehuber E, Bauer W et al.. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment.  Blood. 2007;  109(11) 4777-4785
  • 78 Breiteneder-Geleff S, Soleiman A, Kowalski H et al.. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium.  Am J Pathol. 1999;  154(2) 385-394
  • 79 Mäkinen T, Adams R H, Bailey J et al.. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature.  Genes Dev. 2005;  19(3) 397-410
  • 80 Kawai Y, Hosaka K, Kaidoh M, Minami T, Kodama T, Ohhashi T. Heterogeneity in immunohistochemical, genomic, and biological properties of human lymphatic endothelial cells between initial and collecting lymph vessels.  Lymphat Res Biol. 2008;  6(1) 15-27
  • 81 Wick N, Haluza D, Gurnhofer E et al.. Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells.  Am J Pathol. 2008;  173(4) 1202-1209
  • 82 Mouta Carreira C, Nasser S M, di Tomaso E et al.. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis.  Cancer Res. 2001;  61(22) 8079-8084
  • 83 Arimoto J, Ikura Y, Suekane T et al.. Expression of LYVE-1 in sinusoidal endothelium is reduced in chronically inflamed human livers.  J Gastroenterol. 2009;  , In press
  • 84 Schmid-Schönbein G W. The second valve system in lymphatics.  Lymphat Res Biol. 2003;  1(1) 25-29 discussion 29-31
  • 85 Leak L V, Burke J F. Ultrastructural studies on the lymphatic anchoring filaments.  J Cell Biol. 1968;  36(1) 129-149
  • 86 Skobe M, Detmar M. Structure, function, and molecular control of the skin lymphatic system.  J Investig Dermatol Symp Proc. 2000;  5(1) 14-19
  • 87 Baluk P, Fuxe J, Hashizume H et al.. Functionally specialized junctions between endothelial cells of lymphatic vessels.  J Exp Med. 2007;  204(10) 2349-2362
  • 88 Chi J T, Chang H Y, Haraldsen G et al.. Endothelial cell diversity revealed by global expression profiling.  Proc Natl Acad Sci U S A. 2003;  100(19) 10623-10628
  • 89 Garrafa E, Alessandri G, Benetti A et al.. Isolation and characterization of lymphatic microvascular endothelial cells from human tonsils.  J Cell Physiol. 2006;  207(1) 107-113
  • 90 Garrafa E, Trainini L, Benetti A et al.. Isolation, purification, and heterogeneity of human lymphatic endothelial cells from different tissues.  Lymphology. 2005;  38(4) 159-166
  • 91 Mouta-Bellum C, Kirov A, Miceli-Libby L et al.. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha.  Dev Dyn. 2009;  238(10) 2670-2679
  • 92 Norrmen C, Vandevelde W, Ny A et al.. Liprin {beta}1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity.  Blood. 2010;  115(4) 906-909
  • 93 Torres-Vázquez J, Kamei M, Weinstein B M. Molecular distinction between arteries and veins.  Cell Tissue Res. 2003;  314(1) 43-59
  • 94 Weinstein B M, Lawson N D. Arteries, veins, Notch, and VEGF.  Cold Spring Harb Symp Quant Biol. 2002;  67 155-162
  • 95 Johnson N C, Dillard M E, Baluk P et al.. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity.  Genes Dev. 2008;  22(23) 3282-3291
  • 96 Shawber C J, Funahashi Y, Francisco E et al.. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression.  J Clin Invest. 2007;  117(11) 3369-3382
  • 97 Kang J, Yoo J, Lee S. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells.  Blood. 2010;  , In press
  • 98 Partanen T A, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors.  Cancer. 1999;  86(11) 2406-2412
  • 99 Valtola R, Salven P, Heikkilä P et al.. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer.  Am J Pathol. 1999;  154(5) 1381-1390
  • 100 Witmer A N, van Blijswijk B C, Dai J et al.. VEGFR-3 in adult angiogenesis.  J Pathol. 2001;  195(4) 490-497
  • 101 Nakamura Y, Yasuoka H, Tsujimoto M et al.. Flt-4-positive vessel density correlates with vascular endothelial growth factor-d expression, nodal status, and prognosis in breast cancer.  Clin Cancer Res. 2003;  9(14) 5313-5317
  • 102 Clarijs R, Schalkwijk L, Hofmann U B, Ruiter D J, de Waal R MW. Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma.  Cancer Res. 2002;  62(23) 7059-7065
  • 103 Clasper S, Royston D, Baban D et al.. A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis.  Cancer Res. 2008;  68(18) 7293-7303
  • 104 Royston D, Jackson D G. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma.  J Pathol. 2009;  217(5) 608-619
  • 105 Fiedler U, Christian S, Koidl S et al.. The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors.  Am J Pathol. 2006;  168(3) 1045-1053
  • 106 Aguilar B, Hong Y K. The Origin of Kaposi Sarcoma Tumor Cells. Kerala, India; Research Signpost 2009: 123-138
  • 107 Kaposi M. Idiopathisches multiples pigmentsarcom der haut.  Arch Dermatol und Syphillis. 1872;  4 265-273
  • 108 Chang Y, Cesarman E, Pessin M S et al.. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.  Science. 1994;  266(5192) 1865-1869
  • 109 Dayan A D, Lewis P D. Origin of Kaposi's sarcoma from the reticulo-endothelial system.  Nature. 1967;  213(5079) 889-890
  • 110 Carroll P A, Brazeau E, Lagunoff M. Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation.  Virology. 2004;  328(1) 7-18
  • 111 Hong Y K, Foreman K, Shin J W et al.. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus.  Nat Genet. 2004;  36(7) 683-685
  • 112 Wang H W, Trotter M W, Lagos D et al.. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma.  Nat Genet. 2004;  36(7) 687-693

Young-Kwon HongPh.D. 

Assistant Professor, Departments of Surgery and of Biochemistry & Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California

1450 Biggy St. NRT6501, M/C9601, Los Angeles, CA 90033

Email: young.hong@usc.edu