ABSTRACT
Endothelial cells are found in most organs and tissues in our body. Despite their apparent morphological and functional similarities, endothelial cells exhibit remarkable heterogeneity and plasticity. In a strict sense, no two endothelial cells are identical in terms of their biological, immunological, functional, metabolic, morphological, and anatomical aspects. Their heterogeneity and plasticity are now known to be dependent upon and conferred by their microenvironments, arteriovenous-lymphatic cell identity, organ-specific vascular beds, fluid dynamics, vessel sizes, anatomical locations, physiological and pathological states, and more. Although abundant evidence is available to demonstrate endothelial heterogeneity in the blood vascular system, studies of heterogeneity and plasticity of lymphatic endothelial cells are limited because of the short history of lymphatic research. Nonetheless, a growing body of exciting work has begun to discover that lymphatic endothelial cells are as heterogeneous as blood vascular endothelial cells. In this article, we discuss the heterogeneity and plasticity of lymphatic endothelial cells.
KEYWORDS
Lymphatic - endothelial cell - heterogeneity - cell fate
REFERENCES
1 Asellius G. De lactibus sive lacteis venis. Milan, Italy; Mediolani 1627
2
Harvey W.
An Anatomical Study of the Motion of the Heart and Blood in Animals. 1628.
3
Hong Y K, Shin J W, Detmar M.
Development of the lymphatic vascular system: a mystery unravels.
Dev Dyn.
2004;
231(3)
462-473
4
Sabin F R.
On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig.
Am J Anat.
1902;
1
367-391
5
Sabin F R.
On the development of the superficial lymphatics in the skin of the pig.
Am J Anat.
1904;
3
183-195
6
Huntington G S, McClure C FW.
The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica ).
Am J Anat.
1910;
10
177-311
7
Wigle J T, Harvey N, Detmar M et al..
An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype.
EMBO J.
2002;
21(7)
1505-1513
8
Wigle J T, Oliver G.
Prox1 function is required for the development of the murine lymphatic system.
Cell.
1999;
98(6)
769-778
9
Hong Y K, Lange-Asschenfeldt B, Velasco P et al..
VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the alpha1beta1 and alpha2beta1 integrins.
FASEB J.
2004;
18(10)
1111-1113
10
Oliver G, Detmar M.
The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature.
Genes Dev.
2002;
16(7)
773-783
11
Srinivasan R S, Dillard M E, Lagutin O V et al..
Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature.
Genes Dev.
2007;
21(19)
2422-2432
12
Wilting J, Schneider M, Papoutski M, Alitalo K, Christ B.
An avian model for studies of embryonic lymphangiogenesis.
Lymphology.
2000;
33(3)
81-94
13
Wilting J, Papoutsi M, Othman-Hassan K et al..
Development of the avian lymphatic system.
Microsc Res Tech.
2001;
55(2)
81-91
14
Wilting J, Aref Y, Huang R et al..
Dual origin of avian lymphatics.
Dev Biol.
2006;
292(1)
165-173
15
Oliver G, Sosa-Pineda B, Geisendorf S, Spana E P, Doe C Q, Gruss P.
Prox 1, a prospero-related homeobox gene expressed during mouse development.
Mech Dev.
1993;
44(1)
3-16
16
Kielman M F, Barradeau S, Smits R, Harteveld C L, Bernini L F.
Characterization and localization of the mProx1 gene directly upstream of the mouse alpha-globin gene cluster: identification of a polymorphic direct repeat in the 5'UTR.
Mamm Genome.
1996;
7(12)
877-880
17
Tomarev S I, Zinovieva R D, Chang B, Hawes N L.
Characterization of the mouse Prox1 gene.
Biochem Biophys Res Commun.
1998;
248(3)
684-689
18
Doe C Q, Chu-LaGraff Q, Wright D M, Scott M P.
The prospero gene specifies cell fates in the Drosophila central nervous system.
Cell.
1991;
65(3)
451-464
19
Hong Y K, Detmar M.
Prox1, master regulator of the lymphatic vasculature phenotype.
Cell Tissue Res.
2003;
314(1)
85-92
20
Demidenko Z, Badenhorst P, Jones T, Bi X, Mortin M A.
Regulated nuclear export of the homeodomain transcription factor Prospero.
Development.
2001;
128(8)
1359-1367
21
Hassan B, Li L, Bremer K A, Chang W, Pinsonneault J, Vaessin H.
Prospero is a panneural transcription factor that modulates homeodomain protein activity.
Proc Natl Acad Sci U S A.
1997;
94(20)
10991-10996
22
Shin J W, Min M, Larrieu-Lahargue F et al..
Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis.
Mol Biol Cell.
2006;
17(2)
576-584
23
Hong Y K, Harvey N, Noh Y H et al..
Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate.
Dev Dyn.
2002;
225(3)
351-357
24
Petrova T V, Mäkinen T, Mäkelä T P et al..
Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor.
EMBO J.
2002;
21(17)
4593-4599
25
Song K H, Li T, Chiang J YA.
A Prospero-related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene.
J Biol Chem.
2006;
281(15)
10081-10088
26
Steffensen K R, Holter E, Båvner A et al..
Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZ-F1 homologue.
EMBO Rep.
2004;
5(6)
613-619
27
Qin J, Gao D M, Jiang Q F et al..
Prospero-related homeobox (Prox1) is a corepressor of human liver receptor homolog-1 and suppresses the transcription of the cholesterol 7-alpha-hydroxylase gene.
Mol Endocrinol.
2004;
18(10)
2424-2439
28
Liu Y W, Gao W, Teh H L, Tan J H, Chan W K.
Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium.
Mol Cell Biol.
2003;
23(20)
7243-7255
29
Lee S, Kang J, Yoo J et al..
Prox1 physically and functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate.
Blood.
2009;
113(8)
1856-1859
30
Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T.
COUP-TFII regulates the functions of Prox1 in lymphatic endothelial cells through direct interaction.
Genes Cells.
2009;
14(3)
425-434
31
François M, Caprini A, Hosking B et al..
Sox18 induces development of the lymphatic vasculature in mice.
Nature.
2008;
456(7222)
643-647
32
Hosking B, François M, Wilhelm D et al..
Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice.
Development.
2009;
136(14)
2385-2391
33
Jeltsch M, Kaipainen A, Joukov V et al..
Hyperplasia of lymphatic vessels in VEGF-C transgenic mice.
Science.
1997;
276(5317)
1423-1425
34
Joukov V, Pajusola K, Kaipainen A et al..
A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases.
EMBO J.
1996;
15(2)
290-298
35
Lee J, Gray A, Yuan J, Luoh S M, Avraham H, Wood W I.
Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4.
Proc Natl Acad Sci U S A.
1996;
93(5)
1988-1992
36
Kaipainen A, Korhonen J, Mustonen T et al..
Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.
Proc Natl Acad Sci U S A.
1995;
92(8)
3566-3570
37
Karkkainen M J, Haiko P, Sainio K et al..
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins.
Nat Immunol.
2004;
5(1)
74-80
38
Achen M G, Jeltsch M, Kukk E et al..
Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4).
Proc Natl Acad Sci U S A.
1998;
95(2)
548-553
39
Veikkola T, Jussila L, Makinen T et al..
Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice.
EMBO J.
2001;
20(6)
1223-1231
40
Baldwin M E, Halford M M, Roufail S et al..
Vascular endothelial growth factor D is dispensable for development of the lymphatic system.
Mol Cell Biol.
2005;
25(6)
2441-2449
41
Mäkinen T, Veikkola T, Mustjoki S et al..
Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3.
EMBO J.
2001;
20(17)
4762-4773
42
Dumont D J, Jussila L, Taipale J et al..
Cardiovascular failure in mouse embryos deficient in VEGF receptor-3.
Science.
1998;
282(5390)
946-949
43
Mäkinen T, Jussila L, Veikkola T et al..
Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3.
Nat Med.
2001;
7(2)
199-205
44
Hirakawa S, Hong Y K, Harvey N et al..
Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells.
Am J Pathol.
2003;
162(2)
575-586
45
Kriehuber E, Breiteneder-Geleff S, Groeger M et al..
Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages.
J Exp Med.
2001;
194(6)
797-808
46
Nagy J A, Vasile E, Feng D et al..
VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations.
Cold Spring Harb Symp Quant Biol.
2002;
67
227-237
47
Kunstfeld R, Hirakawa S, Hong Y K et al..
Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia.
Blood.
2004;
104(4)
1048-1057
48
Jackson D G.
The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1.
Trends Cardiovasc Med.
2003;
13(1)
1-7
49
Jackson D G.
Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis.
APMIS.
2004;
112(7–8)
526-538
50
Banerji S, Ni J, Wang S X et al..
LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan.
J Cell Biol.
1999;
144(4)
789-801
51
Gale N W, Prevo R, Espinosa J et al..
Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1.
Mol Cell Biol.
2007;
27(2)
595-604
52
Wetterwald A, Hoffstetter W, Cecchini M G et al..
Characterization and cloning of the E11 antigen, a marker expressed by rat osteoblasts and osteocytes.
Bone.
1996;
18(2)
125-132
53
Schacht V, Ramirez M I, Hong Y K et al..
T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema.
EMBO J.
2003;
22(14)
3546-3556
54
Ramirez M I, Millien G, Hinds A, Cao Y, Seldin D C, Williams M C.
T1alpha, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth.
Dev Biol.
2003;
256(1)
61-72
55
Kato Y, Fujita N, Kunita A et al..
Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors.
J Biol Chem.
2003;
278(51)
51599-51605
56
Zimmer G, Oeffner F, Von Messling V et al..
Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium.
Biochem J.
1999;
341(Pt 2)
277-284
57
Nose K, Saito H, Kuroki T.
Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol-13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells.
Cell Growth Differ.
1990;
1(11)
511-518
58
Rishi A K, Joyce-Brady M, Fisher J et al..
Cloning, characterization, and development expression of a rat lung alveolar type I cell gene in embryonic endodermal and neural derivatives.
Dev Biol.
1995;
167(1)
294-306
59
Tangemann K, Gunn M D, Giblin P, Rosen S D.
A high endothelial cell-derived chemokine induces rapid, efficient, and subset-selective arrest of rolling T lymphocytes on a reconstituted endothelial substrate.
J Immunol.
1998;
161(11)
6330-6337
60
Gunn M D, Tangemann K, Tam C, Cyster J G, Rosen S D, Williams L T.
A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes.
Proc Natl Acad Sci U S A.
1998;
95(1)
258-263
61
Pereira F A, Qiu Y, Tsai M J, Tsai S Y.
Chicken ovalbumin upstream promoter transcription factor (COUP-TF): expression during mouse embryogenesis.
J Steroid Biochem Mol Biol.
1995;
53
503-508
62
Pereira F A, Qiu Y, Zhou G, Tsai M J, Tsai S Y.
The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development.
Genes Dev.
1999;
13(8)
1037-1049
63
Pereira F A, Tsai M J, Tsai S Y.
COUP-TF orphan nuclear receptors in development and differentiation.
Cell Mol Life Sci.
2000;
57(10)
1388-1398
64
You L R, Lin F J, Lee C T, DeMayo F J, Tsai M J, Tsai S Y.
Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity.
Nature.
2005;
435(7038)
98-104
65
Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F.
Endothelial cell heterogeneity and organ specificity.
J Hematother Stem Cell Res.
2002;
11(1)
81-90
66
Børsum T, Hagen I, Henriksen T, Carlander B.
Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture.
Atherosclerosis.
1982;
44(3)
367-378
67
Milici A J, Furie M B, Carley W W.
The formation of fenestrations and channels by capillary endothelium in vitro.
Proc Natl Acad Sci U S A.
1985;
82(18)
6181-6185
68
Risau W.
Induction of blood-brain barrier endothelial cell differentiation.
Ann N Y Acad Sci.
1991;
633
405-419
69
Ager A.
Isolation and culture of high endothelial cells from rat lymph nodes.
J Cell Sci.
1987;
87(Pt 1)
133-144
70
Aird W C, Edelberg J M, Weiler-Guettler H, Simmons W W, Smith T W, Rosenberg R D.
Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment.
J Cell Biol.
1997;
138(5)
1117-1124
71
Zhu D Z, Cheng C F, Pauli B U.
Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule.
Proc Natl Acad Sci U S A.
1991;
88(21)
9568-9572
72
Lacorre D A, Baekkevold E S, Garrido I et al..
Plasticity of endothelial cells: rapid dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the lymphoid tissue microenvironment.
Blood.
2004;
103(11)
4164-4172
73
Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper M S, Skobe M.
Molecular characterization of lymphatic endothelial cells.
Proc Natl Acad Sci U S A.
2002;
99(25)
16069-16074
74
Nisato R E, Harrison J A, Buser R et al..
Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span.
Am J Pathol.
2004;
165(1)
11-24
75
Nisato R E, Buser R, Pepper M S.
Lymphatic endothelial cells: establishment of primaries and characterization of established lines.
Methods Mol Biol.
2009;
467
113-126
76
Wick N, Saharinen P, Saharinen J et al..
Transcriptomal comparison of human dermal lymphatic endothelial cells ex vivo and in vitro.
Physiol Genomics.
2007;
28(2)
179-192
77
Amatschek S, Kriehuber E, Bauer W et al..
Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment.
Blood.
2007;
109(11)
4777-4785
78
Breiteneder-Geleff S, Soleiman A, Kowalski H et al..
Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium.
Am J Pathol.
1999;
154(2)
385-394
79
Mäkinen T, Adams R H, Bailey J et al..
PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature.
Genes Dev.
2005;
19(3)
397-410
80
Kawai Y, Hosaka K, Kaidoh M, Minami T, Kodama T, Ohhashi T.
Heterogeneity in immunohistochemical, genomic, and biological properties of human lymphatic endothelial cells between initial and collecting lymph vessels.
Lymphat Res Biol.
2008;
6(1)
15-27
81
Wick N, Haluza D, Gurnhofer E et al..
Lymphatic precollectors contain a novel, specialized subpopulation of podoplanin low, CCL27-expressing lymphatic endothelial cells.
Am J Pathol.
2008;
173(4)
1202-1209
82
Mouta Carreira C, Nasser S M, di Tomaso E et al..
LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis.
Cancer Res.
2001;
61(22)
8079-8084
83
Arimoto J, Ikura Y, Suekane T et al..
Expression of LYVE-1 in sinusoidal endothelium is reduced in chronically inflamed human livers.
J Gastroenterol.
2009;
, In press
84
Schmid-Schönbein G W.
The second valve system in lymphatics.
Lymphat Res Biol.
2003;
1(1)
25-29
discussion 29-31
85
Leak L V, Burke J F.
Ultrastructural studies on the lymphatic anchoring filaments.
J Cell Biol.
1968;
36(1)
129-149
86
Skobe M, Detmar M.
Structure, function, and molecular control of the skin lymphatic system.
J Investig Dermatol Symp Proc.
2000;
5(1)
14-19
87
Baluk P, Fuxe J, Hashizume H et al..
Functionally specialized junctions between endothelial cells of lymphatic vessels.
J Exp Med.
2007;
204(10)
2349-2362
88
Chi J T, Chang H Y, Haraldsen G et al..
Endothelial cell diversity revealed by global expression profiling.
Proc Natl Acad Sci U S A.
2003;
100(19)
10623-10628
89
Garrafa E, Alessandri G, Benetti A et al..
Isolation and characterization of lymphatic microvascular endothelial cells from human tonsils.
J Cell Physiol.
2006;
207(1)
107-113
90
Garrafa E, Trainini L, Benetti A et al..
Isolation, purification, and heterogeneity of human lymphatic endothelial cells from different tissues.
Lymphology.
2005;
38(4)
159-166
91
Mouta-Bellum C, Kirov A, Miceli-Libby L et al..
Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85alpha, p55alpha, and p50alpha.
Dev Dyn.
2009;
238(10)
2670-2679
92
Norrmen C, Vandevelde W, Ny A et al..
Liprin {beta}1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity.
Blood.
2010;
115(4)
906-909
93
Torres-Vázquez J, Kamei M, Weinstein B M.
Molecular distinction between arteries and veins.
Cell Tissue Res.
2003;
314(1)
43-59
94
Weinstein B M, Lawson N D.
Arteries, veins, Notch, and VEGF.
Cold Spring Harb Symp Quant Biol.
2002;
67
155-162
95
Johnson N C, Dillard M E, Baluk P et al..
Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity.
Genes Dev.
2008;
22(23)
3282-3291
96
Shawber C J, Funahashi Y, Francisco E et al..
Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression.
J Clin Invest.
2007;
117(11)
3369-3382
97
Kang J, Yoo J, Lee S.
An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells.
Blood.
2010;
, In press
98
Partanen T A, Alitalo K, Miettinen M.
Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors.
Cancer.
1999;
86(11)
2406-2412
99
Valtola R, Salven P, Heikkilä P et al..
VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer.
Am J Pathol.
1999;
154(5)
1381-1390
100
Witmer A N, van Blijswijk B C, Dai J et al..
VEGFR-3 in adult angiogenesis.
J Pathol.
2001;
195(4)
490-497
101
Nakamura Y, Yasuoka H, Tsujimoto M et al..
Flt-4-positive vessel density correlates with vascular endothelial growth factor-d expression, nodal status, and prognosis in breast cancer.
Clin Cancer Res.
2003;
9(14)
5313-5317
102
Clarijs R, Schalkwijk L, Hofmann U B, Ruiter D J, de Waal R MW.
Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma.
Cancer Res.
2002;
62(23)
7059-7065
103
Clasper S, Royston D, Baban D et al..
A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis.
Cancer Res.
2008;
68(18)
7293-7303
104
Royston D, Jackson D G.
Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma.
J Pathol.
2009;
217(5)
608-619
105
Fiedler U, Christian S, Koidl S et al..
The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors.
Am J Pathol.
2006;
168(3)
1045-1053
106 Aguilar B, Hong Y K. The Origin of Kaposi Sarcoma Tumor Cells. Kerala, India; Research Signpost 2009: 123-138
107
Kaposi M.
Idiopathisches multiples pigmentsarcom der haut.
Arch Dermatol und Syphillis.
1872;
4
265-273
108
Chang Y, Cesarman E, Pessin M S et al..
Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.
Science.
1994;
266(5192)
1865-1869
109
Dayan A D, Lewis P D.
Origin of Kaposi's sarcoma from the reticulo-endothelial system.
Nature.
1967;
213(5079)
889-890
110
Carroll P A, Brazeau E, Lagunoff M.
Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation.
Virology.
2004;
328(1)
7-18
111
Hong Y K, Foreman K, Shin J W et al..
Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus.
Nat Genet.
2004;
36(7)
683-685
112
Wang H W, Trotter M W, Lagos D et al..
Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma.
Nat Genet.
2004;
36(7)
687-693
Young-Kwon HongPh.D.
Assistant Professor, Departments of Surgery and of Biochemistry & Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California
1450 Biggy St. NRT6501, M/C9601, Los Angeles, CA 90033
Email: young.hong@usc.edu