Semin Thromb Hemost 2010; 36(5): 558-569
DOI: 10.1055/s-0030-1255450
© Thieme Medical Publishers

Recombinant Platelet Factor 4: A Therapeutic, Anti-Neoplastic Chimera?

Giuseppe Lippi1 , Emmanuel J. Favaloro2
  • 1U.O. Diagnostica Ematochimica, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
  • 2Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
Further Information

Publication History

Publication Date:
14 July 2010 (online)

ABSTRACT

Angiogenesis plays a pivotal role in many serious and life-threatening disorders (e.g., cancer, atherosclerosis, diabetes, arthritis, psoriasis, nephropathy, and retinopathy) and is regulated by a delicate equilibrium between a variety of pro- and anti-angiogenic factors. Although recombinant platelet factor 4 (PF4) was originally developed and evaluated as a clinical alternative to protamine for heparin neutralization, the current scientific evidence supports a role for this protein and derivative peptides in inhibiting tumor growth and spread, by suppression of tumor-induced neovascularization in many different types of solid tumors. As a heparin-binding tetramer, recombinant PF4 interferes with several steps of endothelial cell proliferation, migration, and angiogenesis, regulates apoptotic death through activation of distinct signal transduction pathways, inhibits growth factor receptor binding, amplifies the inflammatory response of natural killer cells through regulation of cytokines production, and induces and maintains a nonspecific immune response to cancer cells. These biological evidences paved the way for the development and marketing of novel PF4-based angiostatic agents characterized by reduced toxicity and improved bioavailability, thus raising the possibility of an alternative approach for preventing and treating growth and metastasis of tumors. Some PF4-derived molecules such as carboxyl-terminal fragments of recombinant human PF4 and modified and chimeric peptides have already been developed that exhibit stronger anti-angiogenic properties than the parent molecule and may serve as leads for further therapeutic developments. Newer means of delivering of this anti-angiogenic agent are also being attempted, including PF4-bearing polymeric microspheres, vector-mediated PF4 transduction, transgene transfection into oncolytic viruses, and molecular targeting therapy against PF4 and rHuPF4 conjugates. These delivery systems aim to produce high concentrations of the therapeutic agent in a local area for a sustained period, thereby avoiding the typical problems encountered with long-term administration of recombinant proteins.

REFERENCES

  • 1 Sachais B S, Higazi A A, Cines D B, Poncz M, Kowalska M A. Interactions of platelet factor 4 with the vessel wall.  Semin Thromb Hemost. 2004;  30(3) 351-358
  • 2 Deuel T F, Keim P S, Farmer M, Heinrikson R L. Amino acid sequence of human platelet factor 4.  Proc Natl Acad Sci U S A. 1977;  74(6) 2256-2258
  • 3 Walz D A, Wu V Y, de Lamo R, Dene H, McCoy L E. Primary structure of human platelet factor 4.  Thromb Res. 1977;  11(6) 893-898
  • 4 Hermodson M, Schmer G, Kurachi K. Isolation, crystallization, and primary amino acid sequence of human platelet factor 4.  J Biol Chem. 1977;  252(18) 6276-6279
  • 5 Eisman R, Surrey S, Ramachandran B, Schwartz E, Poncz M. Structural and functional comparison of the genes for human platelet factor 4 and PF4alt.  Blood. 1990;  76(2) 336-344
  • 6 Zhang X, Chen L, Bancroft D P, Lai C K, Maione T E. Crystal structure of recombinant human platelet factor 4.  Biochemistry. 1994;  33(27) 8361-8366
  • 7 Griffin C A, Emanuel B S, LaRocco P, Schwartz E, Poncz M. Human platelet factor 4 gene is mapped to 4q12----q21.  Cytogenet Cell Genet. 1987;  45(2) 67-69
  • 8 Poncz M, Surrey S, LaRocco P et al.. Cloning and characterization of platelet factor 4 cDNA derived from a human erythroleukemic cell line.  Blood. 1987;  69(1) 219-223
  • 9 Van Damme J, Van Beeumen J, Opdenakker G, Billiau A. A novel, NH2-terminal sequence-characterized human monokine possessing neutrophil chemotactic, skin-reactive, and granulocytosis-promoting activity.  J Exp Med. 1988;  167(4) 1364-1376
  • 10 Briquet-Laugier V, Lavenu-Bombled C, Schmitt A et al.. Probing platelet factor 4 alpha-granule targeting.  J Thromb Haemost. 2004;  2(12) 2231-2240
  • 11 Eslin D E, Zhang C, Samuels K J et al.. Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin.  Blood. 2004;  104(10) 3173-3180
  • 12 Schaffner A, Rhyn P, Schoedon G, Schaer D J. Regulated expression of platelet factor 4 in human monocytes—role of PARs as a quantitatively important monocyte activation pathway.  J Leukoc Biol. 2005;  78(1) 202-209
  • 13 Maier M, Wutzler S, Bauer M, Trendafilov P, Henrich D, Marzi I. Altered gene expression patterns in dendritic cells after severe trauma: implications for systemic inflammation and organ injury.  Shock. 2008;  30(4) 344-351
  • 14 Maier M, Geiger E V, Henrich D et al.. Platelet factor 4 is highly upregulated in dendritic cells after severe trauma.  Mol Med. 2009;  15(11–12) 384-391
  • 15 Gewirtz A M, Zhang J, Ratajczak J et al.. Chemokine regulation of human megakaryocytopoiesis.  Blood. 1995;  86(7) 2559-2567
  • 16 Maurer A M, Zhou B, Han Z C. Roles of platelet factor 4 in hematopoiesis and angiogenesis.  Growth Factors. 2006;  24(4) 242-252
  • 17 Lambert M P, Rauova L, Bailey M, Sola-Visner M C, Kowalska M A, Poncz M. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications.  Blood. 2007;  110(4) 1153-1160
  • 18 Lambert M P, Wang Y, Bdeir K H, Nguyen Y, Kowalska M A, Poncz M. Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes.  Blood. 2009;  114(11) 2290-2298
  • 19 Amelot A A, Tagzirt M, Ducouret G, Kuen R L, Le Bonniec B F. Platelet factor 4 (CXCL4) seals blood clots by altering the structure of fibrin.  J Biol Chem. 2007;  282(1) 710-720
  • 20 Dudek A Z, Pennell C A, Decker T D, Young T A, Key N S, Slungaard A. Platelet factor 4 binds to glycanated forms of thrombomodulin and to protein C. A potential mechanism for enhancing generation of activated protein C.  J Biol Chem. 1997;  272(50) 31785-31792
  • 21 Preston R J, Tran S, Johnson J A et al.. Platelet factor 4 impairs the anticoagulant activity of activated protein C.  J Biol Chem. 2009;  284(9) 5869-5875
  • 22 Mosnier L O, Bouma B N, Griffin J H. Platelet factor 4 upregulates protein C activation relative to TAFI activation. Paper presented at: XIX Congress of The International Society on Thrombosis and Haemostasis 2003 OC376 Birmingham, United Kingdom;
  • 23 Sachais B S, Kuo A, Nassar T et al.. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface.  Blood. 2002;  99(10) 3613-3622
  • 24 Nassar T, Sachais B S, Akkawi S et al.. Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells.  J Biol Chem. 2003;  278(8) 6187-6193
  • 25 Pitsilos S, Hunt J, Mohler E R et al.. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters.  Thromb Haemost. 2003;  90(6) 1112-1120
  • 26 Kaiser P, Harenberg J, Walenga J M et al.. Effects of a heparin-binding protein on blood coagulation and platelet function.  Semin Thromb Hemost. 2001;  27(5) 495-502
  • 27 Mixon T A, Dehmer G J. Recombinant platelet factor 4 for heparin neutralization.  Semin Thromb Hemost. 2004;  30(3) 369-377
  • 28 Deuel T F, Senior R M, Chang D, Griffin G L, Heinrikson R L, Kaiser E T. Platelet factor 4 is chemotactic for neutrophils and monocytes.  Proc Natl Acad Sci U S A. 1981;  78(7) 4584-4587
  • 29 Martí F, Bertran E, Llucià M et al.. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8.  J Leukoc Biol. 2002;  72(3) 590-597
  • 30 Pervushina O, Scheuerer B, Reiling N et al.. Platelet factor 4/CXCL4 induces phagocytosis and the generation of reactive oxygen metabolites in mononuclear phagocytes independently of Gi protein activation or intracellular calcium transients.  J Immunol. 2004;  173(3) 2060-2067
  • 31 Liu C Y, Battaglia M, Lee S H, Sun Q H, Aster R H, Visentin G P. Platelet factor 4 differentially modulates CD4+CD25+(regulatory) versus CD4+CD25- (nonregulatory) T cells.  J Immunol. 2005;  174(5) 2680-2686
  • 32 Scheuerer B, Ernst M, Dürrbaum-Landmann I et al.. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages.  Blood. 2000;  95(4) 1158-1166
  • 33 Xia C Q, Kao K J. Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells.  Int Immunol. 2003;  15(8) 1007-1015
  • 34 Xiao Z, Visentin G P, Dayananda K M, Neelamegham S. Immune complexes formed following the binding of anti-platelet factor 4 (CXCL4) antibodies to CXCL4 stimulate human neutrophil activation and cell adhesion.  Blood. 2008;  112(4) 1091-1100
  • 35 Kaplan K L, Broekman M J, Chernoff A, Lesznik G R, Drillings M. Platelet alpha-granule proteins: studies on release and subcellular localization.  Blood. 1979;  53(4) 604-618
  • 36 Girolami B, Girolami A. Heparin-induced thrombocytopenia: a review.  Semin Thromb Hemost. 2006;  32(8) 803-809
  • 37 Kannan M, Saxena R, Adiguzel C, Fareed J. An update on the prevalence and characterization of H-PF4 antibodies in Asian-Indian patients.  Semin Thromb Hemost. 2009;  35(3) 337-343
  • 38 Mattioli A V. Prevalence of anti-PF4/heparin antibodies and the HIT syndrome in cardiovascular medicine.  Semin Thromb Hemost. 2004;  30(3) 291-295
  • 39 McKenzie S E, Reilly M P. Heparin-induced thrombocytopenia and other immune thrombocytopenias: lessons from mouse models.  Semin Thromb Hemost. 2004;  30(5) 559-568
  • 40 Prechel M, Walenga J M. The laboratory diagnosis and clinical management of patients with heparin-induced thrombocytopenia: an update.  Semin Thromb Hemost. 2008;  34(1) 86-96
  • 41 Walenga J M, Jeske W P, Prechel M M, Bacher P, Bakhos M. Decreased prevalence of heparin-induced thrombocytopenia with low-molecular-weight heparin and related drugs.  Semin Thromb Hemost. 2004;  30(Suppl 1) 69-80
  • 42 Walenga J M, Jeske W P, Prechel M M, Bakhos M. Newer insights on the mechanism of heparin-induced thrombocytopenia.  Semin Thromb Hemost. 2004;  30(Suppl 1) 57-67
  • 43 Warkentin T E. An overview of the heparin-induced thrombocytopenia syndrome.  Semin Thromb Hemost. 2004;  30(3) 273-283
  • 44 Suvarna S, Qi R, Arepally G M. Optimization of a murine immunization model for study of PF4/heparin antibodies.  J Thromb Haemost. 2009;  7(5) 857-864
  • 45 Rauova L, Zhai L, Kowalska M A, Arepally G M, Cines D B, Poncz M. Role of platelet surface PF4 antigenic complexes in heparin-induced thrombocytopenia pathogenesis: diagnostic and therapeutic implications.  Blood. 2006;  107(6) 2346-2353
  • 46 Suvarna S, Espinasse B, Qi R et al.. Determinants of PF4/heparin immunogenicity.  Blood. 2007;  110(13) 4253-4260
  • 47 Lambert M P, Rauova L, Bailey M, Sola-Visner M C, Kowalska M A, Poncz M. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications.  Blood. 2007;  110(4) 1153-1160
  • 48 Francis J L. A critical evaluation of assays for detecting antibodies to the heparin-PF4 complex.  Semin Thromb Hemost. 2004;  30(3) 359-368
  • 49 Wojtukiewicz M Z, Sierko E, Kisiel W. The role of hemostatic system inhibitors in malignancy.  Semin Thromb Hemost. 2007;  33(7) 621-642
  • 50 Wojtukiewicz M Z, Sierko E. Inhibitors of hemostatic system in cancer: basic and clinical aspects.  Semin Thromb Hemost. 2007;  33 619-620
  • 51 Sierko E, Wojtukiewicz M Z, Kisiel W. The role of tissue factor pathway inhibitor-2 in cancer biology.  Semin Thromb Hemost. 2007;  33(7) 653-659
  • 52 Amirkhosravi A, Meyer T, Amaya M et al.. The role of tissue factor pathway inhibitor in tumor growth and metastasis.  Semin Thromb Hemost. 2007;  33(7) 643-652
  • 53 O'Reilly M S. Antiangiogenic antithrombin.  Semin Thromb Hemost. 2007;  33(7) 660-666
  • 54 Hanly A M, Winter D C. The role of thrombomodulin in malignancy.  Semin Thromb Hemost. 2007;  33(7) 673-679
  • 55 Tsopanoglou N E, Maragoudakis M E. Inhibition of angiogenesis by small-molecule antagonists of protease-activated receptor-1.  Semin Thromb Hemost. 2007;  33(7) 680-687
  • 56 Falanga A, Marchetti M. Heparin in tumor progression and metastatic dissemination.  Semin Thromb Hemost. 2007;  33(7) 688-694
  • 57 Weitz I C, Liebman H A. The role of oral anticoagulants in tumor biology.  Semin Thromb Hemost. 2007;  33(7) 695-698
  • 58 Sierko E, Wojtukiewicz M Z. Inhibition of platelet function: does it offer a chance of better cancer progression control?.  Semin Thromb Hemost. 2007;  33(7) 712-721
  • 59 Snyder K M, Kessler C M. The pivotal role of thrombin in cancer biology and tumorigenesis.  Semin Thromb Hemost. 2008;  34(8) 734-741
  • 60 Lippi G, Franchini M, Salvagno G L, Guidi G C. Lipoprotein[a] and cancer: anti-neoplastic effect besides its cardiovascular potency.  Cancer Treat Rev. 2007;  33(5) 427-436
  • 61 Franchini M, Montagnana M, Targher G, Manzato F, Lippi G. Pathogenesis, clinical and laboratory aspects of thrombosis in cancer.  J Thromb Thrombolysis. 2007;  24(1) 29-38
  • 62 Pandya N M, Dhalla N S, Santani D D. Angiogenesis—a new target for future therapy.  Vascul Pharmacol. 2006;  44(5) 265-274
  • 63 Gupta K, Zhang J. Angiogenesis: a curse or cure?.  Postgrad Med J. 2005;  81(954) 236-242
  • 64 Park K S, Rifat S, Eck H, Adachi K, Surrey S, Poncz M. Biologic and biochemic properties of recombinant platelet factor 4 demonstrate identity with the native protein.  Blood. 1990;  75(6) 1290-1295
  • 65 Maione T E, Gray G S, Petro J et al.. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides.  Science. 1990;  247(4938) 77-79
  • 66 Sharpe R J, Byers H R, Scott C F, Bauer S I, Maione T E. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4.  J Natl Cancer Inst. 1990;  82(10) 848-853
  • 67 Maione T E, Gray G S, Hunt A J, Sharpe R J. Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity.  Cancer Res. 1991;  51(8) 2077-2083
  • 68 Tatakis D N. Human platelet factor 4 is a direct inhibitor of human osteoblast-like osteosarcoma cell growth.  Biochem Biophys Res Commun. 1992;  187(1) 287-293
  • 69 Han Z C, Maurer A M, Bellucci S et al.. Inhibitory effect of platelet factor 4 (PF4) on the growth of human erythroleukemia cells: proposed mechanism of action of PF4.  J Lab Clin Med. 1992;  120(4) 645-660
  • 70 Kolber D L, Knisely T L, Maione T E. Inhibition of development of murine melanoma lung metastases by systemic administration of recombinant platelet factor 4.  J Natl Cancer Inst. 1995;  87(4) 304-309
  • 71 Yoshimitsu K, Wright K C, Wallace S, Charnsangavej C, Mavligit G M. Hepatic arterial infusion of recombinant platelet factor-4 suppresses metastases to the lungs from tumors implanted into the livers of rabbits.  Cancer. 1995;  75(10) 2435-2441
  • 72 Belman N, Bonnem E M, Harvey H A, Lipton A. Phase I trial of recombinant platelet factor 4 (rPF4) in patients with advanced colorectal carcinoma.  Invest New Drugs. 1996;  14(4) 387-389
  • 73 Tanaka T, Manome Y, Wen P, Kufe D W, Fine H A. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth.  Nat Med. 1997;  3(4) 437-442
  • 74 Li Y, Liu Y, Jin Y et al.. Transfer of cDNAs of platelet factor 4 and N-truncated peptide inhibits solid tumor growth in vivo [in Chinese].  Zhonghua Yi Xue Za Zhi (Taipei). 2002;  82(1) 35-38
  • 75 Li Y, Jin Y, Chen H et al.. Suppression of tumor growth by viral vector-mediated gene transfer of N-terminal truncated platelet factor 4.  Cancer Biother Radiopharm. 2003;  18(5) 829-840
  • 76 Wu L H, Song G L, Diao S Y et al.. Inhibition of tumor angiogenesis in nude mice by adenovirus-mediated PF4 p17-70 cDNA transfection [in Chinese].  Zhonghua Xue Ye Xue Za Zhi. 2003;  24(8) 426-429
  • 77 Bello L, Giussani C, Carrabba G et al.. Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors.  Clin Cancer Res. 2002;  8(11) 3539-3548
  • 78 Benny O, Duvshani-Eshet M, Cargioli T et al.. Continuous delivery of endogenous inhibitors from poly(lactic-co-glycolic acid) polymeric microspheres inhibits glioma tumor growth.  Clin Cancer Res. 2005;  11(2 Pt 1) 768-776
  • 79 Benny O, Kim S K, Gvili K et al.. In vivo fate and therapeutic efficacy of PF-4/CTF microspheres in an orthotopic human glioblastoma model.  FASEB J. 2008;  22(2) 488-499
  • 80 Yamaguchi K, Ogawa K, Katsube T et al.. Platelet factor 4 gene transfection into tumor cells inhibits angiogenesis, tumor growth and metastasis.  Anticancer Res. 2005;  25(2A) 847-851
  • 81 Liu T C, Zhang T, Fukuhara H et al.. Oncolytic HSV armed with platelet factor 4, an antiangiogenic agent, shows enhanced efficacy.  Mol Ther. 2006;  14(6) 789-797
  • 82 Struyf S, Burdick M D, Proost P, Van Damme J, Strieter R M. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.  Circ Res. 2004;  95(9) 855-857
  • 83 Struyf S, Burdick M D, Peeters E et al.. Platelet factor-4 variant chemokine CXCL4L1 inhibits melanoma and lung carcinoma growth and metastasis by preventing angiogenesis.  Cancer Res. 2007;  67(12) 5940-5948
  • 84 Vandercappellen J, Noppen S, Verbeke H et al.. Stimulation of angiostatic platelet factor-4 variant (CXCL4L1/PF-4var) versus inhibition of angiogenic granulocyte chemotactic protein-2 (CXCL6/GCP-2) in normal and tumoral mesenchymal cells.  J Leukoc Biol. 2007;  82(6) 1519-1530
  • 85 Li X, Jiang L, Wang Y et al.. Inhibition of angiogenesis by a novel small peptide consisting of the active fragments of platelet factor-4 and vasostatin.  Cancer Lett. 2007;  256(1) 29-32
  • 86 Borgström P, Discipio R, Maione T E. Recombinant platelet factor 4, an angiogenic marker for human breast carcinoma.  Anticancer Res. 1998;  18(6A) 4035-4041
  • 87 Cheng S H, Ng M H, Lau K M et al.. 4q loss is potentially an important genetic event in MM tumorigenesis: identification of a tumor suppressor gene regulated by promoter methylation at 4q13.3, platelet factor 4.  Blood. 2007;  109(5) 2089-2099
  • 88 Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis.  Semin Thromb Hemost. 2004;  30(3) 379-385
  • 89 Jouan V, Canron X, Alemany M et al.. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action.  Blood. 1999;  94(3) 984-993
  • 90 Liu Y J, Lu S H, Han Z C. Signal transduction of chemokine platelet factor 4 in human erythroleukemia cells.  Int J Hematol. 2002;  75(4) 401-406
  • 91 Lasagni L, Francalanci M, Annunziato F et al.. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4.  J Exp Med. 2003;  197(11) 1537-1549
  • 92 Bikfalvi A, Gimenez-Gallego G. The control of angiogenesis and tumor invasion by platelet factor-4 and platelet factor-4-derived molecules.  Semin Thromb Hemost. 2004;  30(1) 137-144
  • 93 Sulpice E, Contreres J O, Lacour J, Bryckaert M, Tobelem G. Platelet factor 4 disrupts the intracellular signalling cascade induced by vascular endothelial growth factor by both KDR dependent and independent mechanisms.  Eur J Biochem. 2004;  271(16) 3310-3318
  • 94 Perollet C, Han Z C, Savona C, Caen J P, Bikfalvi A. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization.  Blood. 1998;  91(9) 3289-3299
  • 95 Peng H, Wen T C, Igase K et al.. Suppression by platelet factor 4 of the myogenic activity of basic fibroblast growth factor.  Arch Histol Cytol. 1997;  60(2) 163-174
  • 96 Slungaard A. Platelet factor 4: a chemokine enigma.  Int J Biochem Cell Biol. 2005;  37(6) 1162-1167
  • 97 Griffioen A W, Damen C A, Mayo K H et al.. Angiogenesis inhibitors overcome tumor induced endothelial cell anergy.  Int J Cancer. 1999;  80(2) 315-319
  • 98 Martí F, Bertran E, Llucià M et al.. Platelet factor 4 induces human natural killer cells to synthesize and release interleukin-8.  J Leukoc Biol. 2002;  72(3) 590-597
  • 99 Airoldi I, Cocco C, Giuliani N et al.. Constitutive expression of IL-12R beta 2 on human multiple myeloma cells delineates a novel therapeutic target.  Blood. 2008;  112(3) 750-759
  • 100 Hagedorn M, Zilberberg L, Lozano R M et al.. A short peptide domain of platelet factor 4 blocks angiogenic key events induced by FGF-2.  FASEB J. 2001;  15(3) 550-552
  • 101 Hagedorn M, Zilberberg L, Wilting J et al.. Domain swapping in a COOH-terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors.  Cancer Res. 2002;  62(23) 6884-6890
  • 102 Dymicka-Piekarska V, Butkiewicz A, Kemona H, Gryko M, Mantur M. Does colorectal cancer clinical advancement and surgical treatment affect platelet factor 4 concentration [in Polish].  Pol Merkuriusz Lek. 2004;  17(102) 575-578

Prof. Giuseppe LippiM.D. 

U.O. Diagnostica Ematochimica, Azienda Ospedaliero-Universitaria di Parma

Strada Abbeveratoia 2/a, 43100 - Parma, Italy

Email: giuseppe.lippi@univr.it

Email: ulippi@tin.it

Email: glippi@ao.pr.it