RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258021
Sustainability in Catalysis - Concept or Contradiction?
Publikationsverlauf
Publikationsdatum:
09. August 2010 (online)
Abstract
‘Sustainability’ might be regarded as one of the most important, but misinterpreted key concepts for future developments in various fields of our everyday life. The importance of sustainable development in science, for example, was recognized as early as 1987 when the Brundtland Commission presented their report in which a clear definition of sustainability (e.g., in education, economics, ecology, and science) is given. However, not every development that has claimed to be sustainable fulfills the criteria of the Brundtland definition in that their achievements are very short-sighted and will not have a positive influence on the standard of living for future generations. It is an aim of this account to summarize our approach to a concept that we call ‘sustainable catalysis’, i.e. the use of catalysts based upon abundant, inexpensive, metabolizable metals, such as iron.
1 Introduction
2 Nucleophilic Iron Catalysts as Noble Metal Surrogates
3 Iron-Catalyzed Allylic Substitution
3.1 Development
3.2 Allylic Alkylation - Scope and Limitations
3.3 Allylic Amination
3.4 Allylic Sulfonylation
3.5 Mechanistic Hypothesis and the Stereoselective Course
3.6 ‘Catalytic Surprises’ - A Ligand-Dependent Mechanistic Dichotomy
4 Carbonyl Activation via Iron Catalysis
4.1 The Hypothesis
4.2 Iron-Catalyzed Transesterification
5 Summary
Key words
iron - catalysis - allylic substitutions - transesterifications
- 1 Brundtland Commission [the World Commission on Environment and Development (WCED)] Our Common Future Oxford University; Oxford: 1987.
- 2
Smith JL. J. Econ. Persp. 2009, 23: 145 - 4
Cabri W. Rend. Fis. Acc. Lincei 2007, 18: 271 - 5
Handbook of Green Chemistry:
Biocatalysis
Vol. 3:
Crabtree RH. Wiley-VCH; Weinheim: 2009. - 6
Asymmetric
Organocatalysis
Berkessel A.Gröger H. Wiley-VCH; Weinheim: 2005. -
7a
Iron Catalysis in Organic Chemistry
Plietker B. Wiley-VCH; Weinheim: 2008. -
7b
Correa A.García Mancheño O.Bolm C. Chem. Soc. Rev. 2008, 37: 1108 -
7c
Sherry BD.Fürstner A. Acc. Chem. Res. 2008, 41: 1500 - 8
Metal
Ions in Life Sciences: The Ubiquitous Roles of Cytochrome P450 Proteins
Vol.
3:
Sigel A.Sigel H.Sigel RKO. John Wiley & Sons; Chichester: 2007. - 9
Tard C.Pickett CJ. Chem. Rev. 2009, 109: 2245 - 10
In Advances
in Photosynthesis and Respiration: Photosystem I, The Light-Driven
Plastocyanin: Ferredoxin Oxidoreductase
Goldbeck JH. Springer; Dordrecht: 2006. p.712 - 11
Plietker B.Dieskau A. Eur. J. Org. Chem. 2009, 775 -
12a
Kharasch MS.Fields EK. J. Am. Chem. Soc. 1941, 63: 2316 -
12b
Kharasch MS.Reinmuth O. Grignard Reactions of Nonmetallic Substances Constable; London: 1954. -
12c
Jonas K.Schieferstein L.Krüger C.Tsay Y.-H. Angew. Chem. Int. Ed. Engl. 1979, 18: 550 -
12d
Kauffmann T. Angew. Chem. Int. Ed. Engl. 1996, 35: 386 - 13
Tamura M.Kochi JK. J. Am. Chem. Soc. 1971, 93: 1487 - 14
Hieber W.Beutner H. Z. Anorg. Allg. Chem. 1963, 320: 101 - 15
Hieber W.Beutner H. Z. Naturforsch., B 1960, 15: 323 - 16
Hieber W.Vohler O. Z. Anorg. Allg. Chem. 1958, 294: 219 - 17
Bitterwolf TE.Steele B. Inorg. Chem. Commun. 2006, 9: 512 - 18
Brennessel WW.Ellis JE. Angew. Chem. Int. Ed. 2007, 46: 598 - 19
Collman JP. Acc. Chem. Res. 1975, 8: 342 ; and references cited therein -
20a
Roustan J.-L.Mérour JY.Houlihan F. Tetrahedron Lett. 1979, 20: 3721 -
20b
Roustan J.-L.Abedini M.Baer HH. J. Organomet. Chem. 1989, 376: C20 -
21a
Xu Y.Zhou B. J. Org. Chem. 1987, 52: 974 -
21b
Zhou B.Xu Y. J. Org. Chem. 1988, 53: 4421 - 22
Holzwarth M.Dieskau A.Tabassam M.Plietker B. Angew. Chem. Int. Ed. 2009, 48: 7251 -
24a
Trost BM.Lee C. In Catalytic Asymmetric Synthesis 2nd ed.:Ojima I. Wiley-VCH; New York: 2000. p.593 -
24b
Pfaltz A.Lautens M. In Comprehensive Asymmetric CatalysisJacobsen EN.Pfaltz A.Yamamoto H. Springer; Heidelberg: 1999. p.833 -
24c
Lu Z.Ma S. Angew. Chem. Int. Ed. 2008, 47: 258 -
24d
Trost BM. J. Org. Chem. 2004, 69: 5813 -
24e
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921 -
24f
Graening T.Schmalz H.-G. Angew. Chem. Int. Ed. 2003, 42: 2580 -
24g
Helmchen G. J. Organomet. Chem. 1999, 576: 203 -
24h
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395 -
25a
Kawatsura M.Ata F.Wada S.Hayase S.Unob H.Itoh T. Chem. Commun. 2007, 298 -
25b
Kawatsura M.Ata F.Hayase S.Itoh T. Chem. Commun. 2007, 4283 -
25c
Bruneau C.Renaud J.-L.Demerseman B. Chem. Eur. J. 2006, 12: 5178 -
25d
Fernandez I.Hermatschweiler R.Pregosin PS.Albinati A.Rizzato S. Organometallics 2006, 25: 323 -
25e
Hermatschweiler R.Fernandez I.Breher F.Pregosin PS.Veiros LF.Calhorda MJ. Angew. Chem. Int. Ed. 2005, 44: 4397 -
25f
Mbaye MD.Demerseman B.Renaud J.-L.Toupet L.Bruneau C. Angew. Chem. Int. Ed. 2003, 42: 5066 -
25g
Trost BM.Fraisse PL.Ball ZT. Angew. Chem. Int. Ed. 2002, 41: 1059 -
25h
Morisaki Y.Kondo T.Misudo T.-A. Organometallics 1999, 18: 4742 -
26a
Trost BM.Zhang Y. J. Am. Chem. Soc. 2007, 129: 14548 -
26b
Malkov AV.Gouriou L.Lloyd-Jones GC.Starý I.Langer V.Spoor P.Vinader V.Kočovský P. Chem. Eur. J. 2006, 12: 6910 -
26c
Lloyd-Jones GC.Krska SW.Hughes DL.Gouriou L.Bonnet VD.Jack K.Sun Y.Reamer RA. J. Am. Chem. Soc. 2004, 126: 702 -
26d
Trost BM.Dogra K.Hachiya I.Emura T.Hughes DL.Krska S.Reamer RA.Palucki M.Yasuda N.Reider PJ. Angew. Chem. Int. Ed. 2002, 41: 1929 -
26e
Glorius F.Pfaltz A. Org. Lett. 1999, 1: 141 -
27a
Malkov AV.Baxendale IR.Mansfield DJ.Kočovský P. J. Chem. Soc., Perkin Trans. 1 2001, 1234 -
27b
Malkov AV.Baxendale IR.Dvok D.Mansfield DJ.Kočovský P. J. Org. Chem. 1999, 64: 2737 -
27c
Lloyd-Jones GC.Pfaltz A. Angew. Chem. Int. Ed. 1995, 34: 462 -
27d
Frisell H.Akermark B. Organometallics 1995, 14: 561 -
28a
Ueno S.Hartwig JF. Angew. Chem. Int. Ed. 2008, 47: 1928 -
28b
Spiess S.Welter C.Franck G.Taquet J.-P.Helmchen G. Angew. Chem. Int. Ed. 2008, 47: 7652 -
28c
Helmchen G.Dahnz A.Dübon P.Schelwies M.Weihofen R. Chem. Commun. 2007, 675 -
28d
Markovic D.Hartwig JF. J. Am. Chem. Soc. 2007, 129: 11680 -
28e
Yamashita Y.Gopalarathnam A.Hartwig JF. J. Am. Chem. Soc. 2007, 129: 7508 -
28f
Weix DJ.Hartwig JF. J. Am. Chem. Soc. 2007, 129: 7720 -
28g
Pouy MJ.Leitner A.Weix DJ.Ueno S.Hartwig JF. Org. Lett. 2007, 9: 3949 -
28h
Shekhar S.Trantow B.Leitner A.Hartwig JF. J. Am. Chem. Soc. 2006, 128: 11770 -
28i
Takeuchi R.Kezuka S. Synthesis 2006, 3349 -
29a
Leahy DK.Evans PA. In Modern Rhodium-Catalyzed Organic ReactionsEvans PA. Wiley-VCH; Weinheim: 2005. p.191 -
29b
Menard F.Chapman TM.Dockendorff C.Lautens M. Org. Lett. 2006, 8: 4569 -
29c
Ashfeld BA.Miller KA.Smith AJ.Tran K.Martin SF. Org. Lett. 2005, 7: 1661 -
29d
Evans PA.Robinson JE.Moffett KK. Org. Lett. 2001, 3: 3269 -
29e
Evans PA.Kennedy LJ. Org. Lett. 2000, 2: 2213 -
29f
Evans PA.Leahy DK. J. Am. Chem. Soc. 2000, 122: 5012 -
29g
Evans PA.Nelson JD. J. Am. Chem. Soc. 1998, 120: 5581 - 30
Plietker B. Angew. Chem. Int. Ed. 2006, 45: 1469 - 31
Cygler M.Ahmed FR.Forgues A.Roustan JLA. Inorg. Chem. 1983, 22: 1026 - 32
Trivede R.Tunge JA. Org. Lett. 2009, 11: 5650 - 33
Plietker B. Angew. Chem. Int. Ed. 2006, 45: 6053 - 34
Jegelka M.Plietker B. Org. Lett. 2009, 11: 3462 - 35
N-Heterocyclic Carbenes
in Transition Metal Catalysis
Glorius F. Springer; Berlin: 2007. - 36
Plietker B.Dieskau A.Möws K.Jatsch A. Angew. Chem. Int. Ed. 2008, 47: 198 - 37
Schreiber J.Faber K.Griengl H. Chem. Eur. J. 2008, 14: 8060 -
38a
Otera J. Chem. Rev. 1993, 93: 1449 -
38b
Otera J. Acc. Chem. Res. 2004, 37: 288 - 39
Magens S.Ertelt M.Jatsch A.Plietker B. Org. Lett. 2008, 10: 53
References
U.S. Energy Information Administration. (accessed June 24, 2010).
23For a review on stoichiometric applications of π-allyl iron complexes, see ref. 11.