Subscribe to RSS
DOI: 10.1055/s-0030-1258032
Photodecarboxylative Additions of α-Thioalkyl-Substituted Carboxylates to Alkyl Phenylglyoxylates
Publication History
Publication Date:
12 August 2010 (online)
Abstract
Irradiations of alkyl phenylglyoxylates with sulfur-containing carboxylates yielded the corresponding photodecarboxylative addition products in moderate to good yields of 26-58%. Reductive photodimerization competed with decarboxylative addition in all cases. The reaction protocol was successfully transferred to a microreactor. With potassium 2-(methylsulfanyl)propionate, photoadditions gave diastereomeric mixtures with low selectivity for the like-isomer.
Key words
photodecarboxylation - phenylglyoxolates - photochemistry - photoinduced electron transfer, microreactor
-
1a
Merzlikine AG.Voskresensky SV.Danilov EO.Neckers DC.Fedorov AV. Photochem. Photobiol. Sci. 2007, 6: 608 -
1b
Merzlikine AG.Voskresensky SV.Danilov EO.Fedorov AV.Rodgers MAJ.Neckers DC. Photochem. Photobiol. Sci. 2004, 3: 892 -
1c
Fedorov AV.Danilov EO.Merzlikine AG.Rodgers MAJ.Neckers DC. J. Phys. Chem. A 2003, 107: 3208 -
1d
Merzlikine AG.Voskresensky SV.Danilov EO.Rodgers MAJ.Neckers DC. J. Am. Chem. Soc. 2002, 124: 14532 -
1e
Fedorov AV.Danilov EO.Rodgers MAJ.Neckers DC. J. Am. Chem. Soc. 2001, 123: 5136 -
1f
Hu S.Wu X.Neckers DC. Macromol. 2000, 33: 4030 -
1g
Hu S.Neckers DC. J. Photochem. Photobiol. A: Chem. 1998, 118: 75 -
1h
Hu S.Neckers DC. J. Mater. Chem. 1997, 7: 1737 -
1i
Hu S.Neckers DC. J. Org. Chem. 1997, 62: 755 -
1j
Hu S.Neckers DC. J. Org. Chem. 1996, 61: 6407 -
1k
Encinas MV.Lissi EA.Zanocco A.Steward LC.Scaiano JC. Can. J. Chem. 1984, 62: 386 -
1l
Pappas SP.Alexander JE.Zehr RD. J. Am. Chem. Soc. 1970, 92: 6927 -
1m
Leermakers PA.Warren PC.Vesley GF. J. Am. Chem. Soc. 1964, 86: 1768 -
2a
D’Auria M.Emanuele L.Racioppi R. Lett. Org. Chem. 2008, 5: 249 -
2b
D’Auria M.Emanuele L.Racioppi R. Tetrahedron Lett. 2004, 45: 3877 -
2c
D’Auria M.Emanuele L.Racioppi R. Photochem. Photobiol. Sci. 2003, 2: 904 -
2d
Hu S.Neckers DC. J. Chem. Soc., Perkin Trans. 2 1999, 1771 -
2e
Hu S.Neckers DC.
J. Org. Chem. 1997, 62: 564 -
2f
Buhr S.Griesbeck AG.Lex J. Tetrahedron Lett. 1996, 37: 1195 -
3a
Hu S.Neckers DC. J. Photochem. Photobiol. A: Chem. 1998, 114: 103 -
3b
Fujisawa T.Monroe BM.Hammond GS. J. Am. Chem. Soc. 1970, 92: 542 -
3c
Huyser ES.Neckers DC. J. Org. Chem. 1964, 29: 276 -
4a
Hu S.Neckers DC. J. Org. Chem. 1997, 62: 7827 -
4b
Hu S.Neckers DC. J. Org. Chem. 1997, 62: 6820 -
4c
Hu S.Neckers DC. Tetrahedron 1997, 53: 7165 -
4d
Hu S.Neckers DC. Tetrahedron 1997, 53: 2751 -
5a
Lavy T.Sheynin Y.Sparkes HA.Howard JAK.Kaftory M. Cryst. Eng. Comm. 2008, 10: 734 -
5b
Griesbeck AG.Heckroth H. Synlett 2002, 131 -
5c
Zehavi U. J. Org. Chem. 1977, 42: 2821 -
6a
Gallagher S.Hatoum F.Zientek N.Oelgemöller M. Tetrahedron Lett. 2010, 51: 3639 -
6b
Hatoum F.Gallagher S.Oelgemöller M. Tetrahedron Lett. 2009, 50: 6593 -
6c
Hatoum F.Gallagher S.Baragwanath L.Lex J.Oelgemöller M. Tetrahedron Lett. 2009, 50: 6335 -
6d
Kim AR.Lee K.-S.Lee C.-W.Yoo DJ.Hatoum F.Oelgemöller M. Tetrahedron Lett. 2005, 46: 3395 -
6e
Oelgemöller M.Cygon P.Lex J.Griesbeck AG. Heterocycles 2003, 59: 669 -
6f
Griesbeck AG.Oelgemöller M.Lex J. Synlett 2000, 1455 -
6g
Griesbeck AG.Oelgemöller M. Synlett 2000, 71 -
6h
Griesbeck AG.Gudipati MS.Hirt J.Lex J.Oelgemöller M.Schmickler H.Schouren F. J. Org. Chem. 2000, 65: 7151 -
6i
Griesbeck AG.Oelgemöller M. Synlett 1999, 492 -
6j
Belluau V.Noeureuil P.Ratzke E.Skvortsov A.Gallagher S.Motti CA.Oelgemöller M. Tetrahedron Lett. 2010, 51: 4738 -
7a
Griesbeck AG.Maptue N.Bondock S.Oelgemöller M. Photochem. Photobiol. Sci. 2003, 2: 450 -
7b
Griesbeck AG.Kramer W.Oelgemöller M. Green Chem. 1999, 1: 205 -
9a
Coyle EE.Oelgemöller M. Photochem. Photobiol. Sci. 2008, 7: 1313 -
9b
Coyle EE.Oelgemöller M. Chem. Technol. 2008, 5: T95 -
9c
Matsushita Y.Ichimura T.Ohba N.Kumada S.Sakeda K.Suzuki T.Tanibata H.Murata T. Pure Appl. Chem. 2007, 79: 1959 -
11a The
assignment was based on the NMR data of the corresponding phthalimide
analogues, see:
(a) Griesbeck AG.Oelgemöller M.Lex J.Haeuseler A.Schmittel M. Eur. J. Org. Chem. 2001, 1831 -
11b (b)
Peters K.Peters E.-M.Oelgemöller M.Cho J.-M.Griesbeck AG. Z. Krist. NCS 2000, 215: 37 -
12a
Hoffmann N. J. Photochem. Photobiol. C: Photochem. Rev. 2008, 9: 43 -
12b
Oelgemöller M.Bunte J.-O.Mattay J. In Synthetic Organic PhotochemistryGriesbeck AG.Mattay J. Marcel Dekker; New York: 2004. Chap. 10. p.267-295 -
12c
Mattay J. Angew. Chem., Int. Ed. Engl. 1987, 26: 825 - 13
Pienta NJ. In Photoinduced Electron TransferFox MA.Chanon M. Elservier; Amsterdam: 1988. p.421-486 - 14
Eberson L. In Electron Transfer Reactions in Organic Chemistry (Reactivity and Structure-Concepts in Organic Chemistry) Vol. 25:Hafner K. Springer; Berlin: 1987. p.39-66 -
15a
Görner H.Oelgemöller M.Griesbeck AG. J. Phys. Chem. A 2002, 106: 1458 -
15b
Görner H.Griesbeck AG.Heinrich T.Kramer W.Oelgemöller M. Chem. Eur. J. 2001, 7: 1530 - 17 For phthalimides, see:
Hatanaka Y.Sato Y.Nakai H.Wada M.Mizuguchi T.Kanaoka Y. Liebigs Ann. Chem. 1992, 1113
References and Notes
General Procedure
for Irradiation
The alkyl phenylglyoxylate (1.5 mmol)
was dissolved in MeCN (50 mL). A solution of the potassium carboxylate (4.5
mmol) in H2O (50 mL) was added, and the mixture was irradiated
(Rayonet Photochemical Reactor RPR-200; λ = 350 ± 30
nm) at 15-20 ˚C in a Pyrex tube (λ ³ 300
nm) while purging with a slow stream of nitrogen. The progress of
the reaction was monitored by TLC analysis or by passing the departing
gas stream through a sat. Ba(OH)2 solution until precipitation
of BaCO3 had ceased. Most of the MeCN was evaporated,
and the remaining solution was extracted with EtOAc (4 × 25
mL). The combined organic layers were washed with 5% NaHCO3 (1 × 25
mL) and brine (1 × 25 mL), dried over MgSO4,
and evaporated. The products were purified by flash column
chromatography (eluent:
n-hexane-EtOAc = 5:1).
Selected Physical and Spectral Data for the
Product Methyl-2-(1,3-dithian-2-yl)-2-hydroxy-2-phenylacetate (4e)
Yellowish
solid, mp 104-106 ˚C. R
f
= 0.39 (SiO2, n-hexane-EtOAc = 5:1). ¹H
NMR (400 MHz, acetone-d
6): δ = 1.84
(m, 2 H, CH2), 2.40-2.46 (m, 1 H, SCH2),
2.56-2.62 (m, 1 H, SCH2), 3.02-3.09
(m, 1 H, SCH2), 3.19-3.26 (m, 1 H, SCH2),
3.61 (s, 3 H, OCH3), 4.48 (s, 1 H, CH), 5.14 (s, 1 H, OH),
7.14-7.24 (br m, 3 H, Harom), 7.56 (dd, ³
J = 8.4 Hz, 4
J = 1.6 Hz,
2 H, Harom) ppm. ¹³C NMR
(100 MHz, CDCl3): δ = 25.1 (t, 1 C,
CH2), 28.0 (t, 1 C, SCH2), 28.3 (t, 1 C, SCH2),
50.4 (d, 1 C, CH), 53.9 (q, 1 C, OCH3), 85.1 (s, 1 C, COH),
126.0 (d, 2 C, CHarom), 128.3 (d, 1 C, CHarom),
128.4 (d, 2 C, CHarom), 139.1 (s, 1 C, Cqarom),
173.8 (s, 1 C, C=O) ppm. IR (KBr): ν = 3490,
2953, 2925, 2892, 1725, 1239, 733, 692 cm-¹.
MS (EI, 70 eV): m/z (%) = 284
(<1) [M+], 119 (100) [M+ - H2O],
105 (12), 91 (4), 77 (14), 45 (5).
The dwell-reactor is made out of Foturan glass (λ ³ 300 nm) and has a total path length of 1.15 m (20 turns) on a 118 mm × 73 mm aperture. The reactor consisted of a(bottom) serpentine reaction channel 0.5 × 2 mm (D × W), with a second(top), heat-exchanging channel through which water is passed in order to control the reactor temperature. The degassed reaction mixture (20 mL)8 was pumped through the reaction channel via a syringe pump and collected in a test tube.
16Irradiation of 2 in benzene and in the presence of 5 equiv of Me2S gave the corresponding addition product 5a in a yield of 35%. Selectivity (7 vs. 5a) was determined as 60:40. Similar results were obtained with 1,3-dithiolane.³a