Subscribe to RSS
DOI: 10.1055/s-0030-1258047
Three-Component Mannich Couplings En Route to Substituted Aminophenol and Benzoxazine Derivatives
Publication History
Publication Date:
19 August 2010 (online)
Abstract
The three-component Mannich coupling of phenols, primary amines, and aldehydes was investigated. Unexpectedly, benzoxazine products were obtained in most cases, even in instances where steric hindrance would seem to militate against benzoxazine formation. The stereoselective synthesis of such benzoxazines, their hydrolysis to aminophenol derivatives, and the mechanisms involved are presented and discussed.
Key words
benzoxazines - phenols - aldehydes - multicomponent reaction - Mannich bases
- 1 For a general review, see:
Bujnowski K.Adamczyk A.Synoradzki L. Org. Prep. Proced. Int. 2007, 39: 417 -
2a
Burke WJ.Smith RP.Weatherbee C. J. Am. Chem. Soc. 1952, 74: 602 -
2b
Tramontini M. Synthesis 1973, 703 -
2c
Tramontini M.Angiolini L. Tetrahedron 1990, 46: 1791 -
2d
Burke WJ. J. Am. Chem. Soc. 1949, 71: 609 -
3a
Kasapoglu F.Cianga J.Yagci Y.Takecihi T.
J. Polym. Sci. Polym. Chem. 2003, 41: 3320 -
3b
Agag T.Takeichi T. Macromolecules 2003, 36: 6010 -
3c
Ejfler J.Krauzy-Diedzic K.Szafert S.Lis T.Sobota P. Macromolecules 2009, 42: 4008 -
4a
Burke WJ.Weatherbee C.Lau H.Van Lear G.Goken G. J. Am. Chem. Soc. 1964, 29: 909 -
4b
Moloney GP.Craik DJ.Iskander MN. J. Pharm. Sci. 1992, 81: 692 -
4c
Colin JL.Loubinoux B. Tetrahedron Lett. 1982, 23: 4245 -
5a
Woodgate PD.Horner GM.Maynard NP.Rickard CEF. J. Organomet. Chem. 1999, 592: 180 -
5b
Lyle RE.Walsh DA. J. Organomet. Chem. 1974, 67: 363 -
5c
Chirachanchai S.Laobuthee A.Phongtamburg S.Siripatanasarakit W.Ishida H. J. Appl. Polym. Sci. 2000, 77: 2561 - 6
Barroso S.Cui J.Carretas JM.Cruz A.Santos IC.Duarte MT.Telo JP.Marques N.Martins AM. Organometallics 2009, 28: 3449 - 7
Tshuva EY.Versano M.Goldberg I.Kol M.Weitman M.Goldschmidt Z. Inorg. Chem. Commun. 1999, 2: 371 - For isolated examples, see:
-
10a
Morimura S. Heterocycles 1980, 1331 -
10b
Neuvonen K.Pihlaja K. Acta Chem. Scand. 1993, 47: 695 -
10c
For a discussion of how steric hindrance around the phenol OH affects benzoxazine formation, see ref. 4a.
- 13
Higham CS.Dowling DP.Shaw JL.Cetin A.Ziegler CJ.Farrell JR. Tetrahedron Lett. 2006, 47: 4419 ; and references cited therein - 15
Bürgi HB.Dunitz JD.Shefter E. J. Am. Chem. Soc. 1973, 95: 5065
References and Notes
Compound 7a: ¹H NMR (300 MHz, CDCl3): δ = 7.20 (m, 5 H, Ar), 7.07 (d, J HH = 2.08 Hz, 1 H, Ar), 6.67 (d, J HH = 2.21 Hz, 1 H, Ar), 4.71 (s, 2 H, NCH2O), 3.90 (s, 2 H, ArCH2N), 3.80 (s, 2 H, CH2Ph), 1.30 [s, 9 H, C(CH3)3], 1.70 [s, 9 H, C(CH3)3] ppm. ¹³C-{¹H} NMR (75 MHz , CDCl3): δ = 150.7, 142.2, 138.5, 136.7 (C ipso ), 129.2 (2 C, Ar), 128.6 (2 C, Ar), 127.4 (Ar), 122.2 (2 C, Ar), 119.0 (C ipso ), 81.0 (NCH2O), 55.8 (CH2Ph), 51.1 (ArCH2N), 35.0, 34.4 (C(CH3)3), 31.7, 29.8 (C(CH3)3) ppm. Anal. Calcd for C23H31NO: C, 81.85; H, 9.26; N, 4.15. Found: C, 82.12; H, 10.22; N, 3.84.
9Compound 7d: ¹H NMR (300 MHz, CDCl3): δ = 7.78 (s, 1 H, Ar), 7.75 (s, 1 H, Ar), 7.37 (m, 14 H, Ar), 6.93 (d, J HH = 2.23 Hz, 1 H, Ar), 5.92 (s, 1 H, OCHPhN), 4.98 (s, 1 H, ArCHPhN), 3.94 (d, J HH = 13.95 Hz, 1 H, CH2Ph), 3.49 (d, J HH = 13.96 Hz, 1 H, CH2Ph), 1.66 [s, 9 H, C(CH3)3], 1.37 [s, 9 H, C(CH3)3] ppm. ¹³C-{¹H} NMR (75 MHz, CDCl3): δ = 151.1, 144.5, 141.9, 139.5, 138.9, 136.8 (C ipso ), 129.2 (2 C, Ar), 129.1 (2 C, Ar), 128.3 (2 C, Ar), 128.2 (2 C, Ar), 128.0 (2 C, Ar), 127.7, 127.0, 126.9 (Ar), 126.6 (2 C, Ar), 125.2, 122.5 (Ar), 118.5 (C ipso ), 85.7 (ArCHPhN), 60.8 (NCHPhO), 49.4 (CH2Ph), 35.1, 34.3 [C(CH3)3], 31.6, 29.9 [C(CH3)3] ppm. Anal. Calcd for C35H39NO: C, 85.84; H, 8.03; N, 2.86. Found: C, 84.87; H, 8.51; N, 3.56.
11Compound 7e: ¹H NMR (300 MHz, CDCl3): δ = 7.68 (d, J HH = 7.41 Hz, 2 H, Ar), 7.56 (d, J HH = 7.48 Hz, 2 H, Ar), 7.45 (m, 5 H, Ar), 7.73 (m, 2 H, Ar), 7.07 (d, J HH = 2.23 Hz, 1 H, Ar), 5.78 (s, 1 H, NCHPhO), 5.20 (s, 1 H, ArCHPhN), 3.01 (m, 1 H, CH 2), 2.84 (m, 1 H, CH2), 2.72 (m, 1 H, CH2), 2.55 (m, 1 H, CH2), 2.24 [s, 6 H, N(CH3)2] 1.66 [s, 9 H, C(CH3)3], 1.44 [s, 9 H, C(CH3)3] ppm. ¹³C-{¹H} NMR (75 MHz, CDCl3): δ = 152.8, 144.6, 138.7, 137.0, 135.4 (C ipso ), 129.1 (2 C, Ar), 128.0 (4 C, Ar), 126.5 (2 C, Ar), 125.0, 123.8, 122.5 (Ar), 118.9 (C ipso ), 85.7 (NCHPhO), 63.2 (ArCHPhN), 59.1 (CH2), 45.4 [N(CH3)2], 43.2 (CH2), 35.1, 34.8 [C(CH3)3], 31.6, 29.9 [C(CH3)3] ppm. Colourless crystals of 7e suitable for X-ray diffraction were obtained from a MeOH solution at -20 ˚C. Anal. Calcd for C32H42N2O˙C14H22O: C, 81.65; H, 9.29; N, 4.23. Found: C, 81.47; H, 10.11; N, 4.17.
12Supplementary crystallographic data for 7e and 10e may be obtained from the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif or by E-mail to data_request@ccdc.cam.ac.uk) under the deposit numbers CCDC 773865 and CCDC 773866, respectively.
14Compound 8a: ¹H
NMR (300 MHz, CDCl3): δ = 7.57 (d, J
HH = 8.3
Hz, 2 H, Ar), 7.50 (d, J
HH = 8.1
Hz, 2 H, Ar), 7.22 (d, J
HH = 1.9
Hz, 1 H, Ar), 6.69 (d, J
HH = 1.8
Hz, 1 H, Ar), 4.94 (s, 1 H, ArCHPhN), 2.75 (m, 2 H, CH2),
2.59 (m, 2 H, CH2), 2.42 (m, 1 H, CH2), 2.21 [s,
6 H, N(CH3)2] 1.44 [s, 9 H,
C(CH3)3], 1.21 [s, 9 H,
C(CH3)3] ppm. ¹³C-{¹H} NMR (75
MHz, CDCl3): δ = 154.4, 146.3, 140.7,
136.7 (C
ipso
), 129.6 (Ar),
128,1 (2 C, Ar), 125.9 (2 C, Ar), 123.7, 123.4 (Ar), 68.3 (ArCHPhN),
58.4 (CH2), 45.5 [N(CH3)2],
45.2 (CH2), 35.2, 34.3 [C(CH3)3],
31.8, 29.8 [C(CH3)3] ppm.
In this case, small amounts of the corresponding benzoxazine were
also detected.
Compound 8b: ¹H
NMR (300 MHz, CDCl3): δ = 7.45 (d, J
HH = 8.4
Hz, 2 H, Ar), 7.26 (d, J
HH = 8.4
Hz, 2 H, Ar), 7.21 (d, J
HH = 2.3
Hz, 1 H, Ar), 6.66 (d, J
HH = 2.2
Hz, 1 H, Ar), 4.86 (s, 1 H, ArCHPhN), 2.72 (m, 2 H, CH2),
2.58 (m, 1 H, CH2), 2.36 (m, 1 H, CH2), 2.19 [s,
6 H, N(CH3)2], 1.45 [s,
9 H, C(CH3)3], 1.21 [s,
9 H, C(CH3)3] ppm. ¹³C-{¹H} NMR (75
MHz, CDCl3): δ = 154.4, 141.3, 140.5,
136.5 (C
ipso
), 132.0 (2 C,
Ar), 129,6 (2 C, Ar), 123.8 (C
ipso
),
132.0, 129.5 (Ar), 121.6 (C
ipso
),
67.9 (ArCHPhN), 58.4 (CH2), 45.5 [N(CH3)2],
45.1 (CH2), 35.2, 34.3 [C(CH3)3],
31.8, 29.8 [C(CH3)3] ppm.
Compound 10a: ¹H
NMR (300 MHz, CDCl3): δ = 7.49 (m, 2
H, Ar), 7.37 (m, 3 H, Ar), 7.31 (d, J
HH = 2.20
Hz, 1 H, Ar), 6.96 (d, J
HH = 2.15
Hz, 1 H, Ar), 3.92 (s, 2 H, ArCH2N), 3.86 (s, 2 H, CH2Ph),
1.38 [s, 9 H, C(CH3)3],
1.23 [s, 9 H, C(CH3)3] ppm. ¹³C-{¹H} NMR
(75 MHz, CDCl3): δ = 151.3, 144.4,
141.4 (C
ipso
), 130.1 (2 C,
Ar), 130.0 (C
ipso
), 129.4 (Ar),
129.1 (2 C, Ar), 126.9, 125.7 (Ar), 121.3 (C
ipso
),
49.4 (ArCH2N), 46.5 (CH2Ph), 35.1, 34.3 [C(CH3)3],
31.4, 30.1 [C(CH3)3] ppm.
Anal. Calcd for C22H31NO˙2.12 (CH3OH): C,
73.37; H, 10.13; N, 3.53. Found: C, 73.33; H, 9.80; N, 3.66.
Compound 10b: ¹H NMR (300 MHz,
CDCl3): δ = 7.27 (s, 1 H, Ar), 7.07
(s, 1 H, Ar), 3.97 (s, 2 H, ArCH2N), 2.69 (m, 1 H, CH,
Cy), 1.97 (m, 2 H, CH2, Cy), 1.73 (m, 2 H, CH2,
Cy), 1.62 (m, 1 H, CH2, Cy), 1.42 [s, 9 H, C(CH3)3],
1.29 [s, 9 H, C(CH3)3],
1.19 (m, 5 H, CH2, Cy) ppm. ¹³C-{¹H} NMR (75 MHz,
CDCl3): δ = 152.7, 142.8, 129.0 (C
ipso
), 125.9, 124,3 (Ar), 121.6
(C
ipso
), 56.9 (CH, Cy), 47.1
(ArCH2N), 35.2, 34.4 [C(CH3)3],
31.5, 30.1 [C(CH3)3],
29.8 (2 C, CH2, Cy), 25.3 (CH2, Cy), 24.9
(2 C, CH2, Cy) ppm. Anal. Calcd for C21H35NO˙2.64
(CH3OH): C, 70.62; H, 11.42; N, 3.48. Found: C, 70.54;
H, 10.50; N, 3.96.