Subscribe to RSS
DOI: 10.1055/s-0030-1258048
Three-Component, Diastereoselective Synthesis of Highly Functionalized Indane Derivatives Based on an Anionic Domino Sequence from α-Nitroketones
Publication History
Publication Date:
19 August 2010 (online)
Abstract
The reaction between seven- or eight-membered cyclic α-nitroketones and aromatic 1,2-dialdehydes in the presence of DBU, with tetrahydrofuran containing some water as solvent, afforded 2-nitroindane-1,2-diols with three contiguous stereocenters, one of which is quaternary, in a one-pot, diastereoselective fashion.
Key words
carbocycles - domino reactions - nitroketones - carbanions - nitroaldol reactions
- For selected reviews of diversity-oriented synthesis, see:
-
1a
Burke MD.Schreiber SL. Angew. Chem. Int. Ed. 2004, 43: 46 -
1b
Tan DS. Nature Chem. Biol. 2005, 1: 74 -
1c
Spandl RJ.Bender A.Spring RD. Org. Biomol. Chem. 2008, 6: 1149 - For selected reviews of domino reactions, see:
-
2a
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 -
2b
Tietze LF. Chem. Rev. 1996, 96: 115 -
2c
Rodriguez J. Synlett 1999, 505 -
2d
Pellisier H. Tetrahedron 2006, 62: 1619 -
2e
Pellisier H. Tetrahedron 2006, 62: 2143 -
2f
Liéby-Muller F.Simon C.Constantieux T.Rodriguez J.Padwa A. Adv. Heterocycl. Chem. 2007, 94: 1 -
2g For a monograph, see:
Padwa A.Bur SK. Tetrahedron 2007, 63: 5341 -
2h
Tietze LF.Brasche G.Gericke KM. Domino Reactions in Organic Synthesis Wiley-VCH; Weinheim: 2006. - 3 For a review, see:
Nicolaou KC.Edmonds DJ.Bulger PG. Angew. Chem. Int. Ed. 2006, 45: 7134 -
4a
Miranda S.López-Alvarado P.Giorgi G.Rodríguez J.Avendaño C.Menéndez JC. Synlett 2003, 2159 -
4b
Giorgi G.Miranda S.López-Alvarado P.Avendaño C.Rodríguez J.Menéndez JC. Org. Lett. 2005, 7: 2197 - 5
Kesavan S.Panek JS.Porco JA. Org. Lett. 2007, 9: 5203 - 6 For a representative example, see:
Ersmark K.Feierberg I.Bjelic S.Hamelink E.Hackett F.Blackman MJ.Hulten J.-H.Samuelsson B.Qvist J.Hallberg A. J. Med. Chem. 2004, 47: 110 - 7
Fukatsu K.Uchikawa O.Kawada M.Yamano T.Yamashita M.Kato K.Hirai K.Hinuma S.Miyamoto M.Ohkawa S. J. Med. Chem. 2002, 45: 4212 - 8
Matsui T.Kondo T.Nishita Y.Itadani S.Tsuruta H.Fujita S.Omawari N.Sakai M.Nakazawa S.Ogata A.Mori H.Kamoshima W.Terai K.Ohno H.Obata T.Nakai H.Toda M. Bioorg. Med. Chem. 2002, 10: 3787 - 9
Molteni V.Rhodes D.Rubins K.Hansen M.Bushman FD.Siegel JS. J. Med. Chem. 2000, 43: 2031 - See, for instance:
-
10a
Hett R.Senanayake CH.Wald SA. Tetrahedron Lett. 1998, 39: 1705 -
10b
Zhao C.-X.Duffey MO.Taylor SJ.Morken JP. Org. Lett. 2001, 3: 1829 - 11
Farooq O. Synthesis 1994, 1035 - 13
Baer HH.Achmatowicz B. J. Org. Chem. 1964, 29: 3180
References and Notes
Representative
Procedure
To a solution of the starting α-nitroketone
(1 mmol) in THF (5 mL) was added DBU (1.5 mmol). The resulting solution was
stirred at r.t. for 5 min, under an argon atmosphere. A solution
of the requisite dialdehyde (2 mmol) in THF (5 mL) was then added,
and stirring at r.t. was maintained for 24 h. The reaction mixture
was neutralized with 2 M HCl and most of the THF was evaporated
under reduced pressure. A further amount of 2 M HCl was added until
pH 5, and the solution was then extracted with CH2Cl2 (3 × 10
mL). The combined organic layers were dried over anhyd Na2SO4, filtered,
and evaporated. The residue was purified by chromatography on silica
gel, eluting with a gradient from petroleum ether (PE) to CH2Cl2 or
EtOAc. Characterization data for two representative compounds are
given below.
(±)-(1′
S
*,2′
s
*,3′
R
*)-6-(1′,3′-Dihydroxy-2′-nitroindan-2′-yl)hexanoic
Acid (3a)
The initial 4:1
mixture of diastereomers was obtained in 81% yield. Chromatography
on silica gel, eluting with a gradient from PE to CH2Cl2,
followed by EtOAc, afforded the pure compound 3a in
56% isolated yield as a white solid.
Data for Compound 3a
Mp 102-103 ˚C.
IR (NaCl): νmax = 3397 (OH), 1702 (CO), 1534
and 1353 (NO2) cm-¹. ¹H
NMR (250 MHz, acetone-d
6): δ = 7.44-7.34
(m, 4 H, HAr), 5.69 (s, 2 H, H-1′,3′), 5.50 (br
s, 2 H, OH), 2.17-2.25 (m, 4 H, H-2,6), 1.44-1.56
(m, 2 H, H-3), 1.14-1.33 (m, 4 H, H-4,5) ppm. ¹³C
NMR (63 MHz, acetone-d
6): δ = 174.2
(C-1), 140.9 (C-3′a,7′a), 129.0 (C-5′,6′),
123.8 (C-4′,7′), 105.8 (C-2′), 77.1 (C-1′,3′),
33.5 (C-6), 29.8 (C-2), 29.4 (C-5), 24.7 (C-3), 24.3 (C-4) ppm.
Anal. Calcd for C15H19N06: C, 63.16;
H, 6,66; N, 4.91. Found: C, 63.00; H, 6.58; N, 4.85.
Data for the Minor Diastereomer (Obtained from
the Initial Mixture)
¹H NMR (250
MHz, acetone-d
6): δ = 7.50-7.20
(m, 4 H, HAr), 5.94 and 5.00 (2 s, 2 H, H-1′,3′),
5.27 (s, 2 H, 2 OH), 2.30-1.80 (m, 4 H, H-2,6), 1.60-1.30
(m, 6 H, H-3,4,5) ppm. ¹³C NMR (63
MHz, acetone-d
6): δ = 178.8
(C-1), 140.8 (C-3a′), 137.4 (C-7a′), 130.2 (C-5′),
129.4 (C-6′), 125.2 (C-4′), 124.3 (C-7′),
35.4 (C-2), 32.3 (C-6), 29.6 (C-5), 24.1 and 23.9 (C-3,4) ppm.
(±)-(1′
S
*,2′
s
*,3′
R
*)-7-(1′,3′-Dihydroxy-2′-nitro-2′,3′-dihydro-1
H
-cyclopenta[
b
]naphth-2′-yl)heptanoic
Acid (3i)
The initial 3:1
mixture of diastereomers was obtained in 66% yield. Chromatography
on silica gel, eluting with a gradient from PE to EtOAc, afforded
the pure compound 3i in 42% isolated
yield, as a pale yellow oil.
Data for
Compound 3i
IR (NaCl): νmax = 3415
(OH), 1722, 1711 (CO), 1536 and 1357 (NO2) cm-¹. ¹H
NMR (250 MHz, CDCl3): δ = 7.92 (dd, 2
H, J = 6.6,
3.3 Hz, H-Ar), 7.85 (s, 2 H, HAr), 7.49 (dd, 2 H, J = 6.2,
3.2 Hz, HAr), 5.78 (s, 2 H, H-1′,3′), 2.25-2.12 (m,
4 H, H-2, 7), 1.54-1.48 (m, 2 H, H-3), 1.31-1.23
(m, 6 H, H-4,5,6) ppm. ¹³C NMR (63
MHz, CDCl3): δ = 175.4 (C-1), 137.5
(C-3a′,9a′), 133.2 (C-4a′,8a′),
126.8 (C-6′,7′), 124.7 (C-5′,8′),
120.9 (C-4′,9′), 103.9 (C-2′), 75.3 (C-1′,3′), 32.5
(C-7), 28.7 (C-2), 27.6 (C-5), 27.5 (C-4), 23.6 (C-3); 23.0 (C-6)
ppm. Anal. Calcd for C20H23NO6:
C, 64.33; H, 6.21; N, 3.75. Found: C, 64.30; H, 6.20; N, 3.62.
Data for the Minor Diastereomer (Obtained from
the Initial Mixture)
¹H NMR (250
MHz, CDCl3): δ = 8.10-7.80
(m, 4 H, HAr), 7.75-7.60 (m, 2 H, HAr), 6.20 (s, 2 H, C1′,3′),
5.60 (s, 2 H, OH), 2.40-2.30 (m, 4 H, H-2,7), 2.30-2.10
(m, 2 H, H-3), 1.80-1.50 and 1.40-1.20 (2 m, 6
H, H-4,5,6) ppm.