Synlett 2010(16): 2453-2456  
DOI: 10.1055/s-0030-1258056
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Practical and Highly Efficient Hydroacylation Reaction of Azodicarboxylates with Aldehydes in Water

Qianying Zhang, Erica Parker, Allan D. Headley*, Bukuo Ni*
Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
Fax: +1(903)4686020; e-Mail: allan_headley@tamu-commerce.edu; e-Mail: bukuo_ni@tamu-commerce.edu;
Weitere Informationen

Publikationsverlauf

Received 10 May 2010
Publikationsdatum:
19. August 2010 (online)

Abstract

The very efficient hydroacylation reaction of azodicarboxylates, with various aldehydes, was carried successfully out at room temperature in water without the use of a catalyst to obtain a variety of hydrazine imide products in high yields. A wide range of aldehydes, including aliphatic and aromatic compounds, was considered, and the reaction is believed to proceed via a radical mechanism, in which water plays an integral role in stabilizing the radical intermediate.

    References and notes

  • 1 These authors contributed equally to this work
  • 2a Poliakoff M. Fitzpatrick JM. Farren TR. Anastas PT. Science  2002,  297:  807 
  • 2b Desimone JM. Science  2002,  297:  799 
  • 3a Li CJ. Chan TH. Organic Reactions in Aqueous Media   Wiley; New York: 1997. 
  • 3b Ten Brink G.-J. Arends IWCE. Sheldon RA. Science  2000,  287:  636 
  • 3c Lindstroem UM. Chem. Rev.  2002,  102:  2751 
  • 3d Breslow R. Acc. Chem. Res.  1991,  24:  159 
  • 3e Kobayashi S. Manabe K. Acc. Chem. Res.  2002,  35:  533 
  • 3f Engberts JBFN. Blandamer MJ. Chem. Commun.  2001,  1701 
  • 3g Kobayashi S. Manabe K. Pure Appl. Chem.  2000,  72:  1373 
  • For selected reviews, see:
  • 4a Hegedus LS. Angew. Chem., Int. Ed. Engl.  1988,  27:  1113 
  • 4b Nair V. Menon RS. Sreekanth AR. Abhilash N. Biju AT. Acc. Chem. Res.  2006,  39:  520 
  • 4c Vollhardt KPC. Eichberg MJ. Strategies and Tactics in Organic Synthesis  2004,  4:  365 
  • 4d Beller M. Riermeier TH. Transition Met. Org. Synth.  1998,  1:  184 
  • 4e Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed.  2004,  43:  3368 
  • 4f Hartwig JF. Science  2002,  297:  1653 
  • 4g Knochel P. Sapountzis I. Gommermann N. Metal-Catalyzed Cross-Coupling Reactions   2nd ed., Vol 2:  de Mejiere A. Diederich F. Wiley-VCH; Weinheim: 2004.  p.671 
  • 4h Matsubara R. Kobayashi S. Acc. Chem. Res.  2008,  41:  292 
  • 5a Brunn E. Huisgen R. Angew. Chem., Int. Ed. Engl.  1969,  8:  513 
  • 5b Nair V. Biju AT. Mohanan K. Suresh E. Org. Lett.  2006,  8:  2213 
  • 5c Otte RD. Sakata T. Guzei IA. Lee D. Org. Lett.  2005,  7:  495 
  • 5d Nair V. Biju AT. Abhilash KG. Menon RS. Suresh E. Org. Lett.  2005,  7:  2121 
  • 5e Nair V. Biju AT. Vinod AU. Suresh E. Org. Lett.  2005,  7:  5139 
  • For selected α-amination of carbonyl compounds, see:
  • 6a Zhu R. Zhang D. Wu J. Liu C. Tetrahedron: Asymmetry  2007,  18:  1655 
  • 6b Mashiko T. Hara K. Tanaka D. Fujiwara Y. Kumagai N. Shibasaki M. J. Am. Chem. Soc.  2007,  129:  11342 
  • 6c Thomassigny C. Prim D. Greck C. Tetrahedron Lett.  2006,  47:  1117 
  • 6d Liu X. Li H. Deng L. Org. Lett.  2005,  7:  167 
  • 6e For reviews, see: Marigo M. Juhl K. Jørgensen KA. Angew. Chem. Int. Ed.  2003,  42:  1367 
  • 6f Erdik E. Tetrahedron  2004,  60:  8747 
  • 6g Greck C. Drouillat B. Thomassigny C. Eur. J. Org. Chem.  2004,  1377 
  • 7a Diels O. Fisher E. Ber. Dtsch. Chem. Ges.  1914,  47:  2043 
  • 7b Huisgen R. Rapp W. Ugi I. Walz H. Glogger I. Justus Liebigs Ann. Chem.  1954,  586:  52 
  • 7c Askani R. Chem. Ber.  1965,  98:  2551 
  • 7d Jeffs PW. Campbell HF. Hawks RL. J. Chem. Soc., Chem. Commun.  1971,  1338 
  • 7e Smissman EE. Makriyannis A. J. Org. Chem.  1973,  38:  1652 
  • 7f Doleschall G. Tetrahedron Lett.  1978,  19:  2131 
  • 7g Abarca B. Ballesteros R. Gonzalez E. Sancho P. Sepulveda J. Soriano C. Heterocycles  1990,  31:  1811 
  • 7h Reliquet A. Besbes R. Reliquet F. Meslin JC. Phosphorus, Sulfur Silicon Relat. Elem.  1992,  70:  211 
  • 7i Denis A. Renou C. Tetrahedron Lett.  2002,  43:  4171 
  • 8a Hoffmann HMR. Angew. Chem., Int. Ed. Engl.  1969,  8:  556 
  • 8b Stephenson LM. Mattern D. J. Org. Chem.  1976,  41:  3614 
  • 8c Grigg R. Kemp J. J. Chem. Soc., Chem. Commun.  1977,  125 
  • 8d Dang HS. Davies AG. J. Chem. Soc., Perkin Trans. 2  1991,  721 
  • 8e Leblanc Y. Zamboni R. Bernstein MA. J. Org. Chem.  1991,  56:  1971 
  • 8f Brimble MA. Heathcock CH. J. Org. Chem.  1993,  58:  5261 
  • 8g Kinart WJ. J. Chem. Res., Synop.  1994,  486 
  • 8h Sarkar TK. Ghorai BK. Das S. Grangopadhyay P. Rao S. Tetrahedron Lett.  1996,  37:  6607 
  • 8i Aly AA. Ehrhardt S. Hopf H. Dix I. Jones PG. Eur. J. Org. Chem.  2006,  335 
  • 8j Biswas A. Sharma BK. Willett JL. Erhan SZ. Cheng HN. Green Chem.  2008,  10:  298 
  • 9a Schenck GO. Formaneck H. Angew. Chem.  1958,  70:  505 
  • 9b Alder K. Noble T. Ber. Dtsch. Chem. Ges.  1943,  54 
  • 9c Huisgen R. Jakob F. Justus Liebigs Ann. Chem.  1954,  590:  37 
  • 9d González-Rosende ME. Lozano-Lucia O. Zaballos-Garcia E. Sepúlveda-Arques J. J. Chem. Res., Synop.  1995,  260 
  • 9e Zaballos-García E. González-Rosende ME. Jorda-Gregori JM. Sepúlveda-Arques J. Jennings WB. O’Leary D. Twomey S. Tetrahedron  1997,  53:  9313 
  • 10a Lee D. Otte RD. J. Org. Chem.  2004,  69:  3569 
  • 10b Kim YJ. Lee D. Org. Lett.  2004,  6:  4351 
  • 11 Ni B. Zhang Q. Garre S. Headley AD. Adv. Synth. Catal.  2009,  351:  875 
  • 14 Chudasama V. Fitzmaurice RJ. Caddick S. Nature Chem.  2010,  2:  592 
12

The reaction of hexanal and diisopropyl azodicarboxylate without catalyst under neat conditions was described by Lee et al.¹0a and afforded the addition product with 14 days at r.t.

13

Due to the many byproducts observed in the reaction mixture, the bisazodicarboxylates could not be isolated.¹0a

15

Typical Procedure for the Hydroacylation Reaction in H 2 O
To a stirred solution of aldehyde 1 (1.0 mmol) in H2O (0.5 mL) was added azodicarboxylate 2 (0.5 mmol). The reaction was stirred at r.t. for the time as indicated in Tables  [¹] and  [²] . The reaction mixture was extracted with Et2O for two times (4 × 5 mL). The Et2O solution was combined, concentrated, and purified by flash chromatography on silica gel (hexane-EtOAc = 4:1) to afford the product 3.
Data for the new hydroacylation products: Compound 3b: ¹H NMR (400 MHz, CDCl3): δ = 6.57 (br, 1 H), 5.10-4.90 (m, 2 H), 2.94-2.84 (m, 2 H), 1.72-1.58 (m, 4 H), 1.40-1.15 (m, 20 H), 0.88 (t, J = 6.8 Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 173.9, 155.1, 152.6, 72.1, 70.4, 37.0, 31.8, 29.3, 29.2, 29.1, 24.7, 24.6, 22.6, 21.9, 21.7, 14.1 ppm. Anal. Calcd for C16H32N2O5Na [M + Na]+: 367.2209; found: 367.2207. Compound 3n: ¹H NMR (400 MHz, CDCl3): δ = 6.68 (br, 1 H), 4.30 (q, J = 7.2 Hz, 2 H), 4.21 (q, J = 7.2 Hz, 2 H), 3.44-3.34 (m, 1 H), 2.00-1.60 (m, 6 H), 1.52-1.17 (m, 10 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 177.1, 155.6, 153.1, 63.7, 62.4, 62.2, 43.9, 29.3, 28.9, 28.8, 25.7, 25.6, 25.5, 25.3, 14.3, 14.1 ppm. Anal. Calcd for C13H22N2O5Na [M + Na]+: 309.1421; found: 309.1421. Compound 3o: ¹H NMR (400 MHz, CDCl3): δ = 7.34 (br, 10 H), 6.76 (br, 1 H), 5.24 (s, 2 H), 5.17 (s, 2 H), 3.46-3.26 (m, 1 H), 2.00-1.14 (m, 10 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 176.8, 155.4, 153.0, 135.3, 134.7, 128.6, 128.5, 128.4, 128.1, 69.1, 68.0, 43.9, 29.3, 28.8, 25.7, 25.5, 25.3 ppm. Anal. Calcd for C23H26N2O5Na [M + Na]+: 433.1734; found: 433.1738.