RSS-Feed abonnieren
DOI: 10.1055/s-0030-1258056
A Practical and Highly Efficient Hydroacylation Reaction of Azodicarboxylates with Aldehydes in Water
Publikationsverlauf
Publikationsdatum:
19. August 2010 (online)
Abstract
The very efficient hydroacylation reaction of azodicarboxylates, with various aldehydes, was carried successfully out at room temperature in water without the use of a catalyst to obtain a variety of hydrazine imide products in high yields. A wide range of aldehydes, including aliphatic and aromatic compounds, was considered, and the reaction is believed to proceed via a radical mechanism, in which water plays an integral role in stabilizing the radical intermediate.
Key words
azo compounds - green chemistry - hydroacylation - aldehydes
- 1 These authors contributed equally
to this work
-
2a
Poliakoff M.Fitzpatrick JM.Farren TR.Anastas PT. Science 2002, 297: 807 -
2b
Desimone JM. Science 2002, 297: 799 -
3a
Li CJ.Chan TH. Organic Reactions in Aqueous Media Wiley; New York: 1997. -
3b
Ten Brink G.-J.Arends IWCE.Sheldon RA. Science 2000, 287: 636 -
3c
Lindstroem UM. Chem. Rev. 2002, 102: 2751 -
3d
Breslow R. Acc. Chem. Res. 1991, 24: 159 -
3e
Kobayashi S.Manabe K. Acc. Chem. Res. 2002, 35: 533 -
3f
Engberts JBFN.Blandamer MJ. Chem. Commun. 2001, 1701 -
3g
Kobayashi S.Manabe K. Pure Appl. Chem. 2000, 72: 1373 - For selected reviews, see:
-
4a
Hegedus LS. Angew. Chem., Int. Ed. Engl. 1988, 27: 1113 -
4b
Nair V.Menon RS.Sreekanth AR.Abhilash N.Biju AT. Acc. Chem. Res. 2006, 39: 520 -
4c
Vollhardt KPC.Eichberg MJ. Strategies and Tactics in Organic Synthesis 2004, 4: 365 -
4d
Beller M.Riermeier TH. Transition Met. Org. Synth. 1998, 1: 184 -
4e
Beller M.Seayad J.Tillack A.Jiao H. Angew. Chem. Int. Ed. 2004, 43: 3368 -
4f
Hartwig JF. Science 2002, 297: 1653 -
4g
Knochel P.Sapountzis I.Gommermann N. Metal-Catalyzed Cross-Coupling Reactions 2nd ed., Vol 2:de Mejiere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.671 -
4h
Matsubara R.Kobayashi S. Acc. Chem. Res. 2008, 41: 292 -
5a
Brunn E.Huisgen R. Angew. Chem., Int. Ed. Engl. 1969, 8: 513 -
5b
Nair V.Biju AT.Mohanan K.Suresh E. Org. Lett. 2006, 8: 2213 -
5c
Otte RD.Sakata T.Guzei IA.Lee D. Org. Lett. 2005, 7: 495 -
5d
Nair V.Biju AT.Abhilash KG.Menon RS.Suresh E. Org. Lett. 2005, 7: 2121 -
5e
Nair V.Biju AT.Vinod AU.Suresh E. Org. Lett. 2005, 7: 5139 - For selected α-amination of carbonyl compounds, see:
-
6a
Zhu R.Zhang D.Wu J.Liu C. Tetrahedron: Asymmetry 2007, 18: 1655 -
6b
Mashiko T.Hara K.Tanaka D.Fujiwara Y.Kumagai N.Shibasaki M. J. Am. Chem. Soc. 2007, 129: 11342 -
6c
Thomassigny C.Prim D.Greck C. Tetrahedron Lett. 2006, 47: 1117 -
6d
Liu X.Li H.Deng L. Org. Lett. 2005, 7: 167 -
6e For reviews, see:
Marigo M.Juhl K.Jørgensen KA. Angew. Chem. Int. Ed. 2003, 42: 1367 -
6f
Erdik E. Tetrahedron 2004, 60: 8747 -
6g
Greck C.Drouillat B.Thomassigny C. Eur. J. Org. Chem. 2004, 1377 -
7a
Diels O.Fisher E. Ber. Dtsch. Chem. Ges. 1914, 47: 2043 -
7b
Huisgen R.Rapp W.Ugi I.Walz H.Glogger I. Justus Liebigs Ann. Chem. 1954, 586: 52 -
7c
Askani R. Chem. Ber. 1965, 98: 2551 -
7d
Jeffs PW.Campbell HF.Hawks RL. J. Chem. Soc., Chem. Commun. 1971, 1338 -
7e
Smissman EE.Makriyannis A. J. Org. Chem. 1973, 38: 1652 -
7f
Doleschall G. Tetrahedron Lett. 1978, 19: 2131 -
7g
Abarca B.Ballesteros R.Gonzalez E.Sancho P.Sepulveda J.Soriano C. Heterocycles 1990, 31: 1811 -
7h
Reliquet A.Besbes R.Reliquet F.Meslin JC. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 70: 211 -
7i
Denis A.Renou C. Tetrahedron Lett. 2002, 43: 4171 -
8a
Hoffmann HMR. Angew. Chem., Int. Ed. Engl. 1969, 8: 556 -
8b
Stephenson LM.Mattern D. J. Org. Chem. 1976, 41: 3614 -
8c
Grigg R.Kemp J. J. Chem. Soc., Chem. Commun. 1977, 125 -
8d
Dang HS.Davies AG. J. Chem. Soc., Perkin Trans. 2 1991, 721 -
8e
Leblanc Y.Zamboni R.Bernstein MA. J. Org. Chem. 1991, 56: 1971 -
8f
Brimble MA.Heathcock CH. J. Org. Chem. 1993, 58: 5261 -
8g
Kinart WJ. J. Chem. Res., Synop. 1994, 486 -
8h
Sarkar TK.Ghorai BK.Das S.Grangopadhyay P.Rao S. Tetrahedron Lett. 1996, 37: 6607 -
8i
Aly AA.Ehrhardt S.Hopf H.Dix I.Jones PG. Eur. J. Org. Chem. 2006, 335 -
8j
Biswas A.Sharma BK.Willett JL.Erhan SZ.Cheng HN. Green Chem. 2008, 10: 298 -
9a
Schenck GO.Formaneck H. Angew. Chem. 1958, 70: 505 -
9b
Alder K.Noble T. Ber. Dtsch. Chem. Ges. 1943, 54 -
9c
Huisgen R.Jakob F. Justus Liebigs Ann. Chem. 1954, 590: 37 -
9d
González-Rosende ME.Lozano-Lucia O.Zaballos-Garcia E.Sepúlveda-Arques J. J. Chem. Res., Synop. 1995, 260 -
9e
Zaballos-García E.González-Rosende ME.Jorda-Gregori JM.Sepúlveda-Arques J.Jennings WB.O’Leary D.Twomey S. Tetrahedron 1997, 53: 9313 -
10a
Lee D.Otte RD. J. Org. Chem. 2004, 69: 3569 -
10b
Kim YJ.Lee D. Org. Lett. 2004, 6: 4351 - 11
Ni B.Zhang Q.Garre S.Headley AD. Adv. Synth. Catal. 2009, 351: 875 - 14
Chudasama V.Fitzmaurice RJ.Caddick S. Nature Chem. 2010, 2: 592
References and notes
The reaction of hexanal and diisopropyl azodicarboxylate without catalyst under neat conditions was described by Lee et al.¹0a and afforded the addition product with 14 days at r.t.
13Due to the many byproducts observed in the reaction mixture, the bisazodicarboxylates could not be isolated.¹0a
15
Typical Procedure
for the Hydroacylation Reaction in H
2
O
To a stirred solution of aldehyde 1 (1.0 mmol) in H2O (0.5 mL)
was added azodicarboxylate 2 (0.5 mmol).
The reaction was stirred at r.t. for the time as indicated in Tables
[¹]
and
[²]
. The reaction mixture
was extracted with Et2O for two times (4 × 5
mL). The Et2O solution was combined, concentrated, and
purified by flash chromatography on silica gel (hexane-EtOAc = 4:1)
to afford the product 3.
Data
for the new hydroacylation products: Compound 3b: ¹H
NMR (400 MHz, CDCl3): δ = 6.57 (br,
1 H), 5.10-4.90 (m, 2 H), 2.94-2.84 (m, 2 H),
1.72-1.58 (m, 4 H), 1.40-1.15 (m, 20 H), 0.88
(t, J = 6.8
Hz, 3 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 173.9,
155.1, 152.6, 72.1, 70.4, 37.0, 31.8, 29.3, 29.2, 29.1, 24.7, 24.6,
22.6, 21.9, 21.7, 14.1 ppm. Anal. Calcd for C16H32N2O5Na [M + Na]+:
367.2209; found: 367.2207. Compound 3n: ¹H
NMR (400 MHz, CDCl3): δ = 6.68
(br, 1 H), 4.30 (q, J = 7.2
Hz, 2 H), 4.21 (q, J = 7.2 Hz,
2 H), 3.44-3.34 (m, 1 H), 2.00-1.60 (m, 6 H),
1.52-1.17 (m, 10 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 177.1, 155.6,
153.1, 63.7, 62.4, 62.2, 43.9, 29.3, 28.9, 28.8, 25.7, 25.6, 25.5,
25.3, 14.3, 14.1 ppm. Anal. Calcd for C13H22N2O5Na [M + Na]+:
309.1421; found: 309.1421. Compound 3o: ¹H
NMR (400 MHz, CDCl3): δ = 7.34 (br,
10 H), 6.76 (br, 1 H), 5.24 (s, 2 H), 5.17 (s, 2 H), 3.46-3.26
(m, 1 H), 2.00-1.14 (m, 10 H) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 176.8, 155.4,
153.0, 135.3, 134.7, 128.6, 128.5, 128.4, 128.1, 69.1, 68.0, 43.9,
29.3, 28.8, 25.7, 25.5, 25.3 ppm. Anal. Calcd for C23H26N2O5Na [M + Na]+:
433.1734; found: 433.1738.