Abstract
N ,N -Dimethylhydrazones
of propenal- and 2-methylpropenal and their derivatives
and homologues (vinylogous aza-enamines) were allowed to react with N ,N -dimethylformiminium chloride
in moisture-free dimethylformamide to yield singly, doubly, and
even triply aminomethylated products. They can be easily separated
and characterized as crystalline hydrochlorides. The reaction takes
place at the ω-position of the π-system. This
is a consequence of the conjugative interaction of the electron-donating aminohydrazone
group with the double bond system in analogy to the enamines. The
formation of dialkylhydrazones from unsaturated aldehydes thus causes
the umpolung of the formerly electrophilic d³ -building
blocks into a nucleophile. Depending on the reaction conditions
and confirmed by crystal structures and 2D NMR experiments, control
can be exerted over the degree of substitution: Up to trisubstituted
products were obtained for the 2-methylpropenal derivative. The
hydrochlorides can be easily deprotonated to yield the free aminohydrazone
bases. The back-conversion of the aminohydrazones into the corresponding
amino aldehydes is possible under acidic conditions.
Key words
hydrazones - electrophilic substitution - nucleophilic addition - amino aldehydes - umpolung
References 1 For Aza-enamines part X, see ref. 4d.
2 Present address: Institut für
Chemie der Technischen Universität Berlin, Straße
des 17. Juni 135, 10623 Berlin, Germany.
3
Hickmott PW. In The Chemistry of Enamines, Part 1
Patai S.
Rappoport Z.
Wiley;
New
York:
1994.
p.727
4a
Brehme R.
Nikolajewski HE.
Z.
Chem.
1968,
8:
226
4b
Brehme R.
Nikolajewski HE.
Tetrahedron
Lett.
1982,
23:
1131
4c
Brehme R.
Chem.
Ber.
1990,
123:
2039
4d
Brehme R.
Gründemann E.
Schneider M.
Radeglia R.
Reck G.
Schulz B.
Synthesis
2003,
1615
4e
Brehme R.
Reck G.
Schulz B.
Radeglia R.
Synthesis
2003,
1620
4f
Brehme R.
Gründemann E.
Schneider M.
J.
Prakt. Chem./Chem.-Ztg.
2000,
342:
700
5a
Kamitori Y.
Hojo M.
Masuda R.
Fujitani T.
Ohara S.
Yokoyama T.
J.
Org. Chem.
1988,
53:
129
5b
Kamitori Y.
Hojo M.
Masuda R.
Yoshida T.
Ohara S.
Yamada K.
Yoshikawa N.
J. Org. Chem.
1988,
53:
519
6a
Brehme R.
Nikolajewski HE.
Tetrahedron
1969,
25:
1159
6b
Brehme R.
Nikolajewski HE.
Tetrahedron
1976,
32:
731
6c
Brehme R.
Stroede B.
J. Prakt. Chem./Chem.-Ztg.
1987,
329:
246
6d
Brehme R.
Klemann A.
Tetrahedron
1987,
43:
4113
7a
Fernandez R.
Lassaletta JM.
Synlett
2000,
1228
7b
Herrera RP.
Monge D.
Martin-Zamora E.
Fernandez R.
Lassaletta JM.
Org. Lett.
2007,
9:
3303
7c
Monge D.
Martin-Zamora E.
Vazquez J.
Alcarazo M.
Alvarez E.
Fernandez R.
Lassaletta JM.
Org.
Lett.
2007,
9:
2867
8a
Seebach D.
Angew. Chem., Int. Ed. Engl.
1979,
18:
239 ; Angew. Chem.
1979 , 91 , 259
8b
Seebach D.
Angew. Chem.,
Int. Ed. Engl.
1969,
8:
639 ; Angew. Chem.
1969 , 81 , 690
8c
Stetter H.
Kuhlmann H.
Org. React.
1991,
40:
407
9
Severin T.
Wanninger G.
Lerche H.
Chem.
Ber.
1984,
117:
2875
10
Tolmachev AA.
Merkulov AS.
Yurchenko AA.
Semenova MG.
Pinchuk AM.
Russian Chem. Bull.
1998,
47:
1749
11
Mühlstädt M.
Weber L.
Z. Chem.
1985,
25:
400
12
Orlewska C.
Shaker R.
Dees M.
Otto H.-H.
Monatsh. Chem.
2000,
131:
889
13
Brehme R.
Enders D.
Fernandez R.
Lassaletta JM.
Eur. J. Org. Chem.
2007,
5629
14 The synthetic procedures are described
in references 5b, 9, 15, 18-21, which are cited in the
text when the corresponding hydrazone is first mentioned.
15
Gomez-Bengoa E.
Echavarren AM.
J. Org. Chem.
1991,
56:
3497
16
Böhme H.
Keitzer WLG.
Chem. Ber.
1958,
91:
340
17 The ¹ H NMR shift
of the azomethine proton depends on the protonation state of the
hydrazone amino group. For example, the azomethine signal of unprotonated
3-(4-nitrophenyl)prop-2-enal dimethylhydrazone (20 )
appears at 7.07 ppm, while it experiences a significant downfield
shift to 8.73 ppm upon protonation to 20 ˙HCl.
18
Mino T.
Yamashita M.
J. Org. Chem.
1996,
61:
1159
19
Waldner A.
Helv.
Chim. Acta
1988,
71:
486
20
Corey EJ.
Enders D.
Chem. Ber.
1978,
111:
1362
21
Nasakin OE.
Sheverdov VP.
Tafeenko VA.
Bulai AKh.
Zh.
Org. Khim.
1992,
28:
1841 ; J. Org. Chem. USSR. ; 1992 , 28 : 1481
22a
Carrol JD.
Jones PR.
Ball RG.
J.
Org. Chem.
1991,
56:
4208
22b
Ichikizaki I.
Ching-Chun Y.
Yutaka F.
Yoshihiko H.
Bull. Chem. Soc. Jpn.
1955,
28:
80
22c
Forss H.
Aust.
J. Chem.
1956,
9:
422
23
Sheldrick GM.
SHELX97,
Programs for Crystal Structure Analysis (Release 97-2)
Institut
für Anorg. Chemie der Universität Göttingen;
Göttingen:
1998.
24
Farrugia LJ.
J.
Appl. Crystallogr.
1997,
30:
565
25 Crystallographic data (excluding structure
factors) for the structures reported in this paper have been deposited
with the Cambridge Crystallographic Data Centre as supplementary publication
numbers CCDC-725902 [(Z )-6 ˙HCl], CCDC-725903 [(Z )-10 ˙4HCl],
CCDC-725904 [(E )-12 ˙2HCl], CCDC-725901 [(Z )-21 ˙HCl] and
CCDC-780812 (27 ). Copies of the data can
be obtained free of charge on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [Fax: +44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk].